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Abstract
Teaching robots how to perform everyday household activities while at the same time,

experiencing how it is like to perform these tasks as a robot. This thesis proposes the
autogeneration of a skeletal mesh of the PR2 robot and its transfer into a Virtual Reality
environment, where a human user can perform everyday household tasks from inside the
virtual robots body. In order make the virtual robot move as realistic as possible, an
inverse kinematics solver is implemented and used to calculate positions of the arms for
the virtual robot. Since the same inverse kinematics solver is used on the virtual robot as
on the real one, it can be assured that if the virtual robot was able to perform a certain
action and a kinematic solution was found, the same movement will be possible with the
real robot in the real world. Furthermore, several adjustments are implemented in order
to map the human body to the robots one, including the limits a robots body would
introduce. The Goal of this is, that with the help of these limits, a human user will be
able to generate much more precise and better usable data for the robot to learn from.
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Abstrakt
Einen Roboter lehren, alltägliche Haushalts Tätigkeiten zu verrichten, während man

selbst erfährt, wie es ist solche Aufgaben als Roboter zu bearbeiten. Diese Thesis schlägt die
automatische Generierung des Animations-Skelets eines Roboters vor, und die Übertragung
dessen in eine Virtuale Realität, in der ein Mensch alltägliche Haushalt Tätigkeiten als
Roboter verrichten kann. Um die Bewegung des virtuellen Roboters so realistisch wie
möglich zu gestalten, wurde der gleiche inverse Kinematik-Solver für den virtuellen Roboter
implementiert, wie ihn auch der reale Roboter verwendet. Dies garantiert dem menschlichen
Benutzer, dass wenn der virtuelle Roboter eine bestimmte Bewegung mit den Armen
ausführen kann, dann wird der reale Roboter es genauso tun können. Es werden außerdem
einige Anpassungen implementiert, die den Menschlichen Körper dem des Roboters von
den Limitierungen her, annähern. Das Ziel dieser Limitierungen ist es, dass ein Mensch
viel präzisere und damit bessere Daten generieren kann, um den Roboter anhand dieser
daten dann besser lehren zu können.
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1 Introduction

1 Introduction
1.1 Motivation

Teaching by demonstration is a very intuitive and practical approach, to pass on a
skill from one to another and has been also generally applied to robotics in various ways.
Within my bachelors thesis[10] I looked into how Virtual Reality data can be used to teach
a robot simple pick and place tasks, with a breakfast setup scenario in mind. The setup
used there was based on the RobCoG1 project which consisted of two human hands which
could be controlled via motion controllers by the human user and a replica of the kitchen
environment of the PR2 robot.2. Since there was no body visualized within the Virtual
Reality environment, as a human user performing pick and place tasks, one always had
to keep in mind and think about how a robot would perform this exact same task. For
example, as a human it is very natural to bend the torso forward when reaching for an
object. A robot can only rarely do that. The PR2 robot, on whom this research so far has
been tested, has no option of bending the torso. He might however be able to compensate
for this with the length of his arms. But now we have the reverse problem, that the robots
arms are a lot longer than the humans are[20], and a solution must be found on how this
could be accounted for. Another issue was that only the positions of the two hand held
controllers could be tracked within the Virtual Reality environment, and the position of
the camera. There was no way to track where the human feet were placed. The solution
in order to obtain a navigation pose for the robot back then was to remove the height
component of the camera position and project it onto the floor, to estimate where the
user might have stood. Another disparity were the human hands within VR. The robot
has grippers with only two fingers instead of the humans five. This drastically changes
the way the robot can grasp and interact with things compared to a human.

These and some other issues can be addressed and potentially solved by introducing a
robots body into the Virtual Reality system, within which the human user can perform
everyday household activities. With such a robots body, the human user would gain
better understanding of the robot’s capabilities and therefore be able to generate data
which is a lot more suitable for the robot. Also, all the positions of the links and joints of
the robots body can now be tracked and recorded. The navigation pose for the robots
base does not have to be generated based on the camera anymore but can be obtained
from the robots skeletal mesh body.

1.2 Hypothesis
How can a PR2 robot model be generated efficiently for an Virtual Reality environment

within the Unreal Engine? How can the robots body limitations be implemented to the
model and transferred to the human user? Will the human user within such a virtual
robots body be able to generate more suitable data for the robot? The assumption is
that scripts could be implemented and used to auto generate a robot model suitable for
the Unreal Engine based on the Unified Robot Description Language. It is assumed that
an already existing inverse kinematics solver within the Unreal Engine can be used to
calculate the robot bodies movement with respect to the robots capabilities and limits.

1RobCog: http://robcog.org/
2RobCoG: http://robcog.org/ (last accessed: 06.12.2020)
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1 Introduction

Since the human user will be made more aware of the robots capabilities, the assumption
is made that the so generated data will perform better at teaching robots to perform
everyday activities than the previous setup[11] without any virtual body.

1.3 Contribution
The contribution of this thesis will be a skeletal mesh model of the PR2 robot,

auto-generated from an URDF-file, fully human controllable within a Virtual Reality
environment. The movement of the robots arms will use an inverse kinematics solution,
so that the robots movement can be kept as realistic as possible. Some solutions will be
explored and experimented with, which concern the mapping of the PR2s body to the
human body. The goal there is to prevent the human user from performing movements
which the robot will not be able to replicate. As a continuation of previous work[10][11],
some evaluation of this newly presented approach should be performed, so that it is
comparable to the previous work.

1.4 Structure of this Thesis
This thesis will introduce the approach of autogenerating a skeletal mesh for a robot

and introducing it into a Virtual Reality environment in order to collect data on how to
perform everyday household activities as a robot. To make this as realistic as possible,
the same inverse kinematics solution will be used on the virtual robot, as is used on the
real one. Furthermore, some limits will be introduced in order to limit the human user to
the movement capabilities of the robot.

This thesis is structured as follows:

Ch.2 Related Work: will present similar work done in this field and will also discuss
how this approach is different from the already existing ones.

Ch.3 Foundations: within this chapter all tools and programs will be briefly introduced
which play a role and are used within this thesis.

Ch.4 Approach and Implementation: in this chapter all the implementation work
will be described.

Ch.5 Experimental Evaluation: will contain the evaluation and an overview over the
performance of the resulting product.

Ch.6 Conclusion: after giving a brief summary of the work done within this thesis,
some of the problems which have been encountered will be discussed, as well as how this
research can be continued.
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2 Related Work

2 Related Work
Having robots which can help us in every day life by performing household activities

is probably one of the oldest goals the scientific field of robotics has. It seems to be a
very useful goal for many and has been the subject of countless research projects already.
The lack of robots performing every day activities in our homes however, proves that it
is a rather difficult task to achieve. Many home environments while fulfilling the same
functions, look very different. For example, a kitchen will almost guaranteed have a stove,
a dishwasher, a fridge and a dinner table, but the positions of these items, how they
look like and how they are operated can vary greatly. A fridge can look like any other
cupboard in the kitchen, the stove can be electric or gas operated, which would require
different kind of handling, the dinner table might be sometimes located in a different
room at all. Not to mention that different people store their kitchen items in the most
various locations. People will also have different ways of setting up a breakfast table.
With all this variations, it is very difficult to develop a robot, which would be able to
perform in all of these different environments reliably and which will find all the necessary
items on the first try for e.g. a breakfast. A solution for this problem, also a rather old
and fundamental idea in its core, is to simply show a robot where the items are, and
how one would like the breakfast table to be setup. After all, this is how we, as humans,
teach each other also. So why not teach the robots the same way? The difficulty here
lies also in how we would teach the robot. Many options have been already looked into
by different researchers and will be described further in this chapter. One could teach
a robot a new movement or action via kinesthetic learning, teleoperation, simple visual
observation, or since the recent development of technology allows it, via Virtual Reality.
This very last approach allows the robot to gain absolute data about its environment,
since in a Virtual World, every cupboard’s position, color, contents and much more can
be easily recorded and passed on to the robot as data to learn from. It is also possible to
change the environment fairly easily, allowing the collection of data across many different
environments without much work. There are several projects which have looked into this
approach and many questions and aspects associated with it, since while ”learning from
VR” sounds like a simple idea, it can be done in very many different ways.

The closest related work to this thesis is its predecessor, ”Towards robots executing
observed manipulation activities of humans”3 and the resulting paper ”Learning Motion
Parameterizations of Mobile Pick and Place Actions from Observing Humans in Virtual
Environments4. In this previous work, it was looked into if data acquired from Virtual
Reality of every day household activities like setting up a breakfast table, can be used to
teach a robot to perform the same task. In the Bachelors-thesis, the necessary chain of
frameworks was developed, from collecting the data in VR, to loading it into a Knowledge
base[7] and using it within the CRAM[14] planning tool to execute the household task
within simulation[13]. In the following work[11] this approach was developed further by
generalizing the collected data, making it independent of the exact environment it was
collected from. More data was collected within different virtual kitchen environments to
be able to further generalize. It was also extensively tested, with two different robots

3[10]: Alina Hawkin. “Towards robots executing observed manipulation activities of humans”. Bachelor
Thesis. Institute of Artificial Intelligence, University of Bremen. (Visited on 04/23/2018)

4[11]: Gayane Kazhoyan et al. “Learning Motion Parameterizations of Mobile Pick and Place Actions
from Observing Humans in Virtual Environments”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2020
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2 Related Work

within the bullet world simulation[13] and in the real world on the PR2 robot. The success
rate of the robot being able to perform the simple breakfast table setup based on this data
was very high, even though there were not that many positions to reference from. For
example, with the previous approach, only the hands of the human user can be tracked
and the headset. There are no feet positions recorded of where the human user stood
while performing a task, so that a navigation position had to be estimated based on the
location of the head mounted display. The grasping of objects with the human hands is
very different than what the robot can do with his two fingers, leading to impossible or
rather hard grasping configurations. There are no visual ques for the human user as to
how big the robots base actually is, which leads to the human user standing very close to
furniture. If the robot were to use that pose just as is, he would collide with the furniture,
which is why some offsets needed to be applied to the gathered poses.

In this thesis, keeping the previous work in mind, some of the issues described above
should be resolved. By generating a robot body for the Virtual Reality environment, it
will be possible to fully track that body, including the positions of the base and all links
and joints. Better data could be generated simply by the human user being more aware
of the robots limits.

The VirtualHome[15]5-project created a data-set, which contains descriptions of every-
day household activities in natural language and in the form of so called programs which
are symbolic representations of these activities, defining every step in sequence, which is
needed to perform the said activity. This data-set was aimed to be used by robots, in
order to be able to perform these everyday activities and various household environments.
The VirtualHome itself, and the name giver to this project, is a 3D simulator within
the Unity6 game engine used to simulate these household activities. An virtual agent
within this simulation was successfully used to perform these activities based on the
previously generated programs. Furthermore, by placing multiple cameras within the
virtual environment, it was possible to generate a video data-set of the performance of the
everyday activities, which again can be used for further learning by robots. Based on this
data the VirtualHome project team was able to show that an agent within the simulation
was able to perform a household task given only a natural language description of it and
a model, allowing the agent to learn from the provided programs and videos. Based on
this work, these programs were developed further in the authors following work7 now also
using Activity Sketches, which describe the central essence of an activity, which then can
be used with given environmental constrains to generate a program, specifically designed
to perform the given activity within the limits and capabilities the given environment
provides.

This project is similar to this thesis’ idea in the sense that both projects work towards
creating a data-set a robot can learn from, however the techniques applied and the
desired results are different. While the VirtualHome[15] uses natural language descriptions
obtained from crowd sourcing as the basis if their task descriptions and their program

5[15]: Xavier Puig et al. VirtualHome: Simulating Household Activities via Programs. 2018. arXiv:
1806.07011 [cs.CV]

6Unity game engine: https://unity.com/
7[12]: Yuan-Hong Liao et al. “Synthesizing Environment-Aware Activities via Activity Sketches”. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2019
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2 Related Work

generation, this thesis aims more towards generating a data-set based on the general
positions of objects within the household environment and the generalization that can be
performed based on these. The task description or the so called programs, are assumed to
already be there in the form of CRAM-plans (which will be described in the Foundations
section). Also the focus of this thesis for the data generation aspect is to replicate the
robots body in Virtual Reality so that the in the future obtained positions are more
suitable for the robot, since the human and robot body both differ largely in size and
capability. The use of VR also compared to the video data set of the VirtualHome-project
would allow for absolute knowledge about the environment, without having to deal with
the problem of occlusion of the task by objects or the actor himself.

The ROS Reality89 framework provides a connection between the ROS10 framework
and any Virtual Reality hardware supported by Unity11. It was developed and used to
teleoperate a robot with the help of VR, based on kinetetic teaching. This means that
instead of being inside the robots body, like presented in this thesis, the human user is
outside the robots body, but is able to guide the robot by grasping the joints of the VR
Robot and moving them manually into a goal position, like one would do with kenestatic
learning. It was further made possible to set an end-effector target goal with the VR
controller, send it via ROS to the robots own inverse kinematics solver, and visualize the
result to the human operator based on if a solution for the target pose was found or not.
The ROS Reality project also included a URDF parser, which auto-generates the robot
within the Unity game engine by assembling simple game objects and connecting them
with joints, as described in the URDF.

In this thesis a model of the PR2 robot will also be generated for the use within the
Unreal Engine (which will be introduced in the upcoming Foundations chapter), but
instead of just being assembled with game objects, it will be a skeletal mesh, which allows
the use of the Unreal Engine build in kinematics and animation tools. The approach of
kinestetic teaching provides the benefit that the robots links and joints can be posed very
precisely. However, this way of moving the robot is a lot slower than just controlling the
robots manipulators directly. Also, this thesis’ approach differs from the ROS Reality one
also in the fact that teleoperaton is not the end goal. While it probably would be possible
to integrate it also, it might be done so in future work but not in this one. Also while
sending one goal pose to the robots inverse kinematics solver and waiting for the robot to
reach that pose is an intuitive way to teleoperate the robot, the way it currently seems
to be implemented is that only one goal is being sent at a time, and then the human
operator needs to wait for the computed result and the visualization. It is not performed
continuously in real time, in the sense that the robot does not track the movement of
the VR motion controller continuously using inverse kinematics, which is the goal of this
thesis.

A very close field to Virtual Reality is of course Augmented Reality, which has been used

8[19]: D. Whitney et al. “ROS Reality: A Virtual Reality Framework Using Consumer-Grade Hardware
for ROS-Enabled Robots”. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2018, pp. 1–9. doi: 10.1109/IROS.2018.8593513

9[16]: Eric Rosen et al. “Testing Robot Teleoperation using a Virtual Reality Interface with ROS
Reality”. In: Mar. 2018

10[5]: Open Source Robotics Foundation. Bullet world demonstration. url: http://cram-system.org/
tutorials/intermediate/bullet_world (visited on 04/09/2018)

11Unity game engine: https://unity.com/
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2 Related Work

in conjunction with Virtual Reality[4]12 to enhance the embodiment element teleoperation
of a robot. While oftentimes in teleoperation the output of the 3D camera of a robot is
used as the main source of observation of what the robot is currently doing by simply being
mapped onto the headset of the human teleoperator, often times this visual representation
is not enough and can lead to performance errors being caused by the end effector moving
outside the field of view of the camera, or the low resolution of the 3D camera. The
paper[4] describes how by the use of AR the immersion aspect can be further increased by
providing additional information to the teleoperator, in form of a 3D model representing
the robots position even if it moves out of the field of view of the camera, or by providing
other visual ques like visualizing the amount by which the gripper is closed with bars or
by visualizing paths for the end effector to the target the robot should manipulate.

While the above mentioned work is once again targeting the problem of teleoperation,
some of the findings are very interesting and could be applied or developed within the
future work of this thesis. For example, the paper[4] states that the users of this system
reported an increased sense of embodiment and that the learning curve of teleoperating
the robot was significantly reduced. It remains to be seen to what degree these kinds of
visualizations can be applied to this project.

Visualizing parts of the robot within Virtual Reality in order to obtain better pick and
place data has also been a point of research in Zihe Xu’s masters thesis.13. Instead of
adding the full robot body to the Virtual Reality, only some elements were added. The
overall goal was to make the human user aware of the limitations of the robot. The field
of view of the human via the VR headset was adapted to the same range and size as
the robots. A robot usually perceives one image, analyses it and then performs the task
based on that data a trigger based visualization was implemented also. A square robot
base is attached to the humans position within Virtual Reality so that the human user is
made aware of the size of the robots base and therefore can avoid collisions between the
robot and the furniture. A visual que in the form of an arrow is also added to notify the
human user before a collision can occur. The potential collision object is also highlighted
visually. In order to compensate for the disparity in length of human vs. robots arms, Zihe
measured the arms of the human user and added an offset, so that the outstretched length
of the human arms would match the ones of the robot. Another problem between the two
bodies is that the human user can bend forward in order to gain more arm reachability,
while the robot cannot. In order to limit this, an approach with an additional tracker
mounted on the chest of the user was tried, also providing a visual que if a bending
motion was performed. However the sensor proved to be rather unreliable and often times
got occluded by the humans arms, which influenced the obtained data negatively. The
grippers used here were not the PR2s grippers, even though the limitations applied to the
perception and interaction between the human user and the virtual reality environment
were largely PR2 inspired, other, more simple parallel grippers were used instead.

Zihes work was very largely focused on the perception side. Both, in the ways of how
limitations to the field of view were applied as well as how visual ques can be implemented
to make the human user more aware of the robots limits. This thesis however will focus

12[4]: F. Brizzi et al. “Effects of Augmented Reality on the Performance of Teleoperated Industrial
Assembly Tasks in a Robotic Embodiment”. In: IEEE Transactions on Human-Machine Systems 48.2
(2018), pp. 197–206. doi: 10.1109/THMS.2017.2782490

13[20]: Zihe Xu. “Designing Human-controlled Robots in VR for Learning Everyday Manipulation Tasks”.
Master Thesis. Institute of Artificial Intelligence, University of Bremen. (Visited on 12/10/2019)
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more on replicating the PR2s body completely within the Virtual Reality environment.
Both theses have in common that the role model for the applied limitations is the PR2
robot and the body differences between robot and human will be addressed in both also,
but different ways, presenting different solutions to the same initial problem.
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3 Foundations
The following section will introduce all the tools, frameworks, plugins which have been

used within this thesis. Some of the tools and plugins have been adapted or changed
in the process. All changes will be further described in the Implementation4 section.
All software which has been adapted, is open-source. The order of mention within this
chapter corresponds to order of use and implementation.

3.1 ROS - Robot Operating System
The Robot Operating System14(ROS) is a framework which provides many tools and

libraries necessary to develop robot software. It supports the most commonly used
programming languages, allowing to implement the necessary algorithms with the for
them most efficient language. This is made possible by a standardized communication
protocol which needs to implemented within the nodes which need to communicate via
ROS. The entire system is similar in concept to building blocks, where researchers all
over the world can share their solutions to robotic problems. ROS helped the preexisting
problem, in which every robotics research lab or institute had to develop and implement
essentially the same algorithms over and over again, adapting them to their robot, since
there was no network or system which would be able to share these commonly used
algorithms in a generic way. With the modular design that ROS provides, one can easily
download many tools and various implementations, adapt a few parameters if at all,
and run them without much hassle. This modular design helped bring robotics research
forward across the globe.

3.1.1 URDF

The Unified Robot Description Format(URDF)15 is a widespread commonly used XML
based format, containing robot descriptions. It is also used by ROS as a standard within
the ROS community. It essentially describes all the robots links and joints in relation to
one another, specifying their respective limits, forces and sizes. Based on this format, the
Virtual Reality PR2 model will be generated.

3.2 Blender
Blender16 is an open-source 3D-modeling software, which provides many tools centered

around 3D computer graphics. Beside 3D-model creation, it can be used for animation,
rigging, skinning, visual effects generation, texturing, particle, fluid and smoke simulation,
sculpting, rendering, even video editing and many more. It is a very versatile tool which
can always be extended by many available plugins and python scripts. It includes a
python console which allows for element inspection or direct, on-the-go scripting. It is
the most commonly used open-source 3D editing tool. In this thesis, Blender was used to
generate the PR2s Virtual Reality model.

14ROS: Robot Operating System https://www.ros.org/ (last accessed: 06.12.2020)
15URDF: http://wiki.ros.org/urdf (last accessed: 06.12.2020)
16Blender: https://www.blender.org/ (last accessed: 06.12.2020)
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3.2.1 Skeletal Meshes

Skeletal Meshes are 3D animated objects which contain a skeleton, which allows the
mesh fitted around it to be moved and animated. The intuitive idea of a human skeleton
within a human body describes the core principle quite accurately. An animation skeleton
consists of bones. Each bone within blender has a head and a tail, which are described
by 3D-coordinates. Bones can be connected to one another, but they don’t have to be.
These connections, if they exist, represent essentially the joints of the skeleton, while the
bone body itself can be seen as the link. Bones within skeletons are usually surrounded
by one or multiple meshes. The movement of the bones, moves the meshes around them
or deforms them, depending on the influence radius given to the bone. By programming
bone-movement, be it via key-frames and interpolation or forward/inverse kinematics, the
entire mesh can be animated and brought to life.

Constraints can be applied to automate the movement of a skeletal mesh or restrict it.
For example, certain motion-limits between bones can be set up, or inverse-kinematics
chains can be created for pieces of the model, which allow for a more automatic and
environment responsive animations.

3.2.2 phobos-Plugin

Phobos17 is a plugin for Blender, which has been developed by the DFKI (Deutsches
Forschungszentrum für Künstliche Intelligenz, Bremen)18, to assist in the creation of
3D-robot-models for simulators like Gazebo19 or Mars20. It can read in a urdf or a sdf
file, and generate a model out of it.

3.3 Unreal Engine
The Unreal Engine21 is a games development engine created by Epic Games, which

contains very many versatile tools needed to create all sorts of digital games. It allows for
physics based and particle based animation, basic skeletal control animation, 3D world
map creation and the development of game logic. It is one of the most popular game
engines at the moment and is fairly well known for its stunning graphics. Game and
animation logic can be programmed with the help of Blueprints, which is a visual way of
programming which consists of connecting the correct nodes to one another following an
execution path. Alternatively programming can be done with C++. The Blueprint coding
style is more beginner friendly, but is of course more limited than the C++ approach,
which is more powerful but which also contains many engine-specific language caveats
and generally benefits from experience with C++ itself. Both languages can be used for
either purpose, although it is strongly encouraged to use Blueprints for animation and
it is made nearly impossible to not do so. Unreal Engines functionality can be further

17[17]: Kai von Szadkowski and Simon Reichel. “Phobos: A tool for creating complex robot models”.
In: Journal of Open Source Software 5.45 (2020), p. 1326. doi: 10.21105/joss.01326. url:
https://doi.org/10.21105/joss.01326

18DFKI Bremen: https://robotik.dfki-bremen.de/en/startpage.html (last accessed: 06.12.2020)
19Gazebo Simulator: http://gazebosim.org/
20MARS Simulator: https://robotik.dfki-bremen.de/de/forschung/softwaretools/mars.html

(last accessed: 06.12.2020)
21Unreal Engine: https://www.unrealengine.com/ (last access: 06.12.2020)

16

https://doi.org/10.21105/joss.01326
https://doi.org/10.21105/joss.01326
https://robotik.dfki-bremen.de/en/startpage.html
http://gazebosim.org/
https://robotik.dfki-bremen.de/de/forschung/softwaretools/mars.html
https://www.unrealengine.com/


3 Foundations

increased by the use of Plug-ins, which can introduce new features to the game itself or
the development process.

In this thesis the Unreal Engine will be used to setup and control the Virtual Reality
environment in which the virtual robot is supposed to be manipulated and controlled by
the human.

3.4 RobCog - Robot Commonsense Games
The Robot Commonsense Games (RobCoG)22 23 project is largely the baseline for this

thesis in Unreal Engine. Its objective is to collect commonsense knowledge for robots,
based on everyday activities human users can perform within a Virtual Reality environ-
ment. The information about the performed tasks, e.g. positions of objects interacted
with, how they were interacted with etc. can be logged symbolically. Within the RobCoG
environment, the virtual world with which a human user interacts is the same kitchen
environment which can be found in the laboratory of the Institute of Artificial intelligence
Bremen.24 The Head Mounted Display or the HTC Vive25 Headset represents the head of
the human user. It has no visual representation in VR at all and is mapped to the camera
which defines the field of view for the human user. The user interacts with this world via
two HTC Vive VR motion controllers, which in the Virtual Reality are represented as two
human hands. So if one were to look in a mirror within VR, one would only see a pair of
floating hands. The hands are not attached to any sort of body and are directly mapped
to the motion controllers. There are no options or features currently build in to offset the
hands from the motion controller position, at least to my knowledge, since that is not
desired in this case nor necessary. The hands can be open or closed. They have physics
bodies setup within the Unreal Engine for them, meaning that if they collide with another
body in VR, they will not go through that body, but rather be pushed away by it. This
means also that it is possible to interact with the environment without needing to grasp
an item. For example, by hooking the open hand behind a handle, one would still be able
to pull open a drawer. Attached to the motion controllers are also two red arrows, one for
each hand. These represent the location of the motion controllers independently of the
physics. For example, if one pushes with the hand in VR against a wall, the hand will
not go through the wall, but the motion controller in the real world will, since there is no
way of preventing this from happening. To visualize this for the user, the red arrow will
always follow the motion controller, even if it means going through the wall. The mesh of
the hand will be left behind, until the user is back in the open space where the mesh can
attach itself back to the motion controller location.

For grasping physics meant also that while closing the hand by pulling the trigger
of the motion controller, the fingers would collide with the object the user is grasping
and therefore not pass through the object visually, providing a more realistic grasping
experience. However, the fingers always perform only one grasping motion. So while
it mostly looks realistic, for many objects it also looks a bit off. For example, since

22RobCoG: http://robcog.org/ (last accessed: 06.12.2020)
23[8]: Andrei Haidu. Robot Commonsense Games. url: http://www.robcog.org/games.html (visited

on 04/08/2018)
24IAI Bremen: https://ai.uni-bremen.de/ (last accessed: 06.12.2020)
25HTC Vive: https://www.vive.com/eu/ (last accessed: 06.12.2020)
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the grasping motion consists of the fingers just coming together to the middle of the
palm, one cannot perform a very controlled parallel pincer-grasp. This is mostly relevant
for grasping the spoon from a flat surface. Also the grasping works by attaching an
object to the hands palm-area, since a sphere is defined there with which an object
can overlap and then be attached to. When grasping the spoon, since this point is
relatively close to the palm of the hand, one has to really push the hand against the
surface on which the spoon is located, fingers outward, so that one can grasp with the
palm. This is very unrealistic but then again, spoons are very small and thin objects com-
pared to a bowl and cup. They are really currently hard to grasp in VR with this approach.

3.5 KDL and Eigen
KDL26 is a third party library for C++ or Python, developed by the Open Robot

Control Software (Orocos)27, providing forward and inverse kinematic solutions. It reduces
the motion modeling problem to essentially a geometric one. It is widely used within
robotics and is also implemented within CRAM28

3.6 USemLog - Logging Data in Virtual Reality
The USemLog2930 plugin for Unreal Engine allows to record all actions performed

within the Virtual Reality environment. Each object can be tracked, with its position, size
and other properties as well as any interaction an object might have with another. Hence,
if an object e.g. a bowl is standing on a surface e.g. a table, it can be recorded that they
both share a contact event. Then once the bowl is picked up by a user, it no longer is
sharing this contact event but is rather being acted on by a user. All this sub-symbolic
and symbolic information can be recorded in .owl and .json files, which then can be used
by KnowRob (explained below), to infer this information and to base a robot’s decision
making onto these previous experiences.

3.7 CRAM - Cognitive Robot Abstract Machine
CRAM31 is an extensive framework for developing robotics applications. It contains

reasoning mechanisms, a lightweight simulator(bullet world[13]) and many more tools,
which support the development of cognition-enabled control programs for robots. It
defines high level symbolic plans for manipulation activities which can be applied to many
robots. It supports already various robots and can be used for any robot which supports
ROS. In previous work, the Cram-Knowrob-VR32 package was developed, which provides
26KDL: https://orocos.org/kdl.html (last accessed: 06.12.2020)
27Orocos: https://docs.orocos.org/ (last accessed: 06.12.2020)
28CRAM KDL implementation: https://github.com/cram2/cram/blob/master/cram_pr2/cram_

pr2_low_level/src/kinematics-trajectory.lisp
29USemLog: https://github.com/robcog-iai/USemLog (last accessed: 06.12.2020)
30[9]: Andrei Haidu and Michael Beetz. Automated Models of Human Everyday Activity based on Game

and Virtual Reality Technology. (Visited on 04/01/2018)
31[14]: Lorenz Mösenlechner. “The Cognitive Robot Abstract Machine”. Dissertation. München:

Technische Universität München, 2016, http://cram-system.org/
32CRAM KVR package: https://github.com/cram2/cram/tree/boxy-melodic/cram_knowrob/

cram_knowrob_vr
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KnowRob queries and generalization mechanisms for processing data collected in Virtual
Reality. It also contains robot plans and evaluation tools for this type of data. In this
thesis it will be used to evaluate the newly gained PR2-body-based data.

3.8 KnowRob
KnowRob33[18][3] is a knowledge base for robots which aims to assist robots in perform-

ing everyday household activities by providing them with common knowledge. KnowRob
works mainly based with prolog-queries to provide answers to a robots questions. It
can contain knowledge about the current environment, e.g. where is a spoon typically
located in a kitchen? What can be done with a cooking pot? How should a cooking
pot be handled, once it has been on the stove? All these questions and more is common
knowledge for humans but not for robots. Even more important is the generation of this
knowledge. It can be provided via experiences generated by robots while performing every
day tasks. Or knowledge can also be provided by learning from humans. In a Virtual
Reality environment, the full state of the world is known and can be logged in its entirety,
giving even more importance to this kind of data. Even though a new version of KnowRob
has been released[3], in this thesis, still an old version will be used, in the hopes of avoiding
any issues later down the line while testing and evaluating the newly acquired data.

33KnowRob: http://www.knowrob.org/
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4 Approach and Implementation
4.1 Architecture Overview

The following section will describe the implementation work performed within this
thesis. It is structured based on the main tools used. First it will be described how
Blender and phobos were used to generate a skeletal mesh of the PR2 robot. After this,
the Unreal Engine will be introduced and how some basic functions of the PR2 robot were
implemented. Then the various implementations of inverse kinematics nodes of Unreal
Engine will be discussed, since they have been tested and experimented with in quite
some depth. Also the resulting inverse kinematics solution will be presented. Then it only
remains to describe which other features got implemented within Unreal Engine to help
and get the virtual robot to move as realistic as possible and how the differences between
the human and robot bodies were addressed. The last subsection will then discuss how
the data can be recorded within Virtual Reality and what needed to be done to achive
that.

4.2 Implementation
4.2.1 Blender and Phobos: generating a skeletal mesh from a URDF file

The following section will provide an overview of the implementation, changes and
settings to the Phobos-Plugin and Blender, which were necessary in order to generate a
rigged skeletal mesh model of the PR2-Robot based on the URDF file. It will also include
details about the import of the URDF file, as well as the resulting FBX export and the
settings necessary for the Unreal Engine import.

4.2.1.1 preparation of the URDF-File

The URDF-Format has clear rules on how the file should be set up in order to describe
the robot properly, but there does not exist a standard which would enforce the use of
the same XML-Tags throughout the file. This results into different Tags being used for
the same things within one file.

The Phobos plugin however, does not support all of these different tags, which leads to
errors during the import process of the URDF-file. In order to prevent these errors, the
problematic tags have to be removed or replaced with parse-able ones. One example
of such parsing errors if the references ot the meshes within the URDF files. These
references use the ROS notation, meaning they refer to the file path based on the package.
However, phobos and Blender do not have a native ROS integration, so either one needs
to install a plugin to reference all these paths accordingly, or one can search-replace the
package:// prefix with the according adress. The easiest way to achieve this was to use
the search-replace function of any editor and to try to import the file into Blender via
Phobos a few times, to see which tags could not be parsed.

The following table provides an overview of the necessary changes:

The <gazebo> references needed to me commented out completely, since otherwise phobos
would throw errors on import.
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original tag phobos required change
package:// /home/blender/Desktop/pr2_common
<parent> <parent link =
</parent> />
<child> <child link =
</child> />
<axis> <xyz> 0 1 0 </xyz> </axis> <axis xyz="0 1 0"/>

Table 1: Summary of the URDF adaptation which needed to be performed in order for
phobos to parse the URDF correctly.

After all affected tags were replaced or removed, it was possible to successfully import the
file into Blender.

The original PR2 description file which was used can be found here: https://github.
com/code-iai/iai_pr2/blob/master/iai_pr2_description/robots/pr2_calibrated_
with_ft2.xml. The resulting URDF file, after performing all the adaptations can be
found here: https://github.com/hawkina/phobos/blob/rigging/models/iai_pr2_
inorder.urdf

4.2.1.2 Skeletal Mesh generation with phobos

After importing the URDF file into Blender via phobos, the result looks like the PR2
robot but it is unfortunately build wrong. It is not one coherent skeletal mesh. Instead,
every link is its own object, containing a mesh, an armature and a bone. A coherent and
usable skeletal mesh however, would have only one armature, containing all the bones
with the same parent-child relationships as described in the URDF file. Since this is not
the case from the get go, adaptation was needed.
The fastest way to do so seemed to start building the necessary adaptation on top of the
phobos plugin, since it already imports the URDF and converts it into a python collection,
one might as well use this collection as a starting point. Before a skeleton can be created,
it must be understood how skeletal bones work within Blender:

Figure 1: Schematic drawing of a Blender bone.
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Every bone has a head which represents its point of origin, as well as a bone tail, which
represents its end. Bones can be connected to one another but they don’t have to. Bones
are organized in a hierarchy, via parent-child relationships. A bones child is always
connected by its head to the parents tail. Ever bone must have a parent, but not every
bone has a child. A childless bone is regarded as a leaf bone. The resulting structure of
bones is called an armature or outside of Blender, a skeleton. The armature object within
Blender, contains a set of bones which describe the origin or reference position of each
bone. The armature has a second set of bones, identical to the first one, which are the
pose-able bones. These are used for animation and to define constraints. The armature
object also contains all the meshes associated with the bones. In other scenarios, usually
the entire body consists of one mesh and the bones therefore define the areas in which the
body or in this case the mesh can be deformed, depending on the radius of influence and
the given weight of the bone. The connections between the bones represent the joints,
just like within a human skeleton. Since the PR2 robot consists of many meshes, and
each mesh is associated to a bone, the influence are of the bones can be disregarded, since
a bone will always influence just the associated mesh.

Within the scripts of phobos, the main function that was adapted mostly is createLink
within the links.py file. As the name suggests, it is responsible for generating links,
which in this case are the bones we wish to create. When this function is called for the
first time, it creates an empty scene object, called pr2_empty, since it should only be the
reference pose. Then the armature object gets created as well as the root bone, which
in the case of the PR2 is the base_footprint. Since it is the very first bone and since
two positions are needed for each bone and the root bone does not have a parent, it
gets a fixed length of 0.001, by getting a pose for the tail of x = 0, y = 0, z = 0.001.
If no length would be given and the bones head ends up exactly where the tail is, the
bone would disappear again since Blender does not allow bones of length 0. The entire
collection is being iterated over, creating a bone for every child based on the position of
the parent. Every bone that would have had the length 0, gets a very tiny length assigned
to it. The reason is that the PR2 has a few bones in the same place. For example, the
shoulder_lift_link, upper_arm_roll_link and the upper_arm_link all have an origin of 0
and would all result in being non-existant if that rule would not be applied. But since
most of the PR2s joints are revolute and move only along one axis, the idea to map them
each to one bone seems close. Since the poses are always given relative to the parent, the
transforms need to be calculated accordingly.
After all the bones are generated, the meshes are loaded and mapped to the bones. An
armature modifier is applied to every mesh, as well as a vertex group needs to be created,
for the bone to be properly mapped to the skeleton. A rather PR2 specific rule, is that
the meshes for the fingers initially appear at the wrong place. So for example, for the
right gripper both fingers will appear where the right finger is supposed to be, one of
them will have a little offset. This is due to the fact that it is the same mesh is being
used for both of them, so to fix this it needs to be rotated.
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4.2.1.3 Export of the FBX Model from Blender to Unreal Engine

Exporting and FBX from Blender to Unreal Engine is a project of its own. Both
systems treat FBX files slightly different and finding the correct settings takes some time.
The settings which worked in the end are the following:

Figure 2: Blender FBX export settings.

Also, since both programs treat the files rather differently there were a few other issues.
In the beginning, the export failed because all the meshes had the same names as the
bones. They were both referred to as e.g. base_link etc. Within Blender that was not
an issue, since there is a differentiation between the meshes and the bones within the
armature. They are different objects of different classes. However Unreal sees meshes
as bones and adds them as such to the Skeletal tree. There is a setting within the FBX
import of Unreal Engine which supposedly avoids this but it this case it did nothing.
Therefore, for Unreal, there were multiple objects with the same name, which of course
could not be imported properly.
After iterating over all the meshes and prefixing them simply with the term mesh, this
problem was solved. However the skeleton still did not behave correctly. It seemed like
the bones which are supposed to control a specific mesh have an offset to one another.
Basically the wrong bone is controlling the wrong mesh. After some research, it was
found that the Unreal Engine has a very different understanding of bones compared to
Blender. In Blender, every bone has a head and tail, therefore two positions which define
it. In Unreal Engine, only one position describes the bone. The connection seen between
to bones, which looks very similar to the Blender bone body, is simply a visualization
of where the parent of the current bone is. The mismatch and weird movement of the
bones occurred, because Unreal Engine places its bone on the blenders tail of a bone.
The tail was first defined as the position of the next child, and the head being the
important origin of a bone, but for Unreal this all needed to be shifted. This results in
the skeleton within Blender to look a bit disconnected, but works fine within Unreal Engine.
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Figure 3: PR2 skeleton after having all the necessary settings and modifications applied
for the Unreal Engine export.

Another important setting is the path mode: copy setting. This copies all textures of
the meshes into a folder which will be exported with the FBX. If this is not done, the
textures will end up missing in the resulting object within the Unreal Engine.

As far as bone limits and constraints go: they can be applied to the bones fairly easily
within Blender. Even IK chains can be setup. This can all be done with the script also,
based on the URDF. However, either Blender does not export these constraints properly
or they are generally not supported by FBX or Unreal Engine simply ignores them. This is
a bit unclear but during my research I had found several forum posts suggesting that this
is unfortunately, impossible. It might be related to Unreal Engine not having a definition
of general skeletal mesh constraints, outside of the physics asset or animation blueprint.
So unfortunately, the code to generate these constraints within Blender exists, but has
been commented out again since it has no effect on the model within Unreal Engine.
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4.2.2 Unreal Engine: Preparing the Robots model for VR

The following section will describe in more detail what exactly was done to get the
robot to move within the virtual reality. How the robots body was mapped to the humans,
which difficulties arose and how they were solved. The section is split into different aspects
of this process, from the import of the FBX model to inverse kinematics used to move the
robot and other features implemented. In the beginning of the development and for many
of the features, Blueprints were used. This is due to the fact that they are intuitive to use
and allow for very fast prototyping of functionality. For getting to know how the Unreal
Engine works in the beginning suing them was totally fine. For the more complicated
things later on in the development, C++ was used since the limits of what the Blueprints
can do were hit. It also seems like the support for C++ code for general in-game logic
is a lot more present than for animation. It seems like Unreal almost forces the use of
Blueprints for Animation purposes.

4.2.2.1 Import of the FBX Model

For the import of the FBX, no setting changes need to be done, except setting the tick
at skeletal mesh in the Unreal Engine import window, and using the import all button.
Even though the FBX skeleton might have looked a bit off in Blender, within Unreal
Engine it produced the expected result:

Figure 4: The imported PR2 skeletal mesh within the Unreal Engine. The tiny spheres are
essentially the bones, the long connections between them simply visualize their
parent relation between one another.
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It might take a few minutes for the textures to render and be fully displayed, but the
above depiction should be the result. Auto-generated at import as individual files are the
skeletal mesh, the skeleton and a physics asset which contains some collision capsules,
but not for all the bones. The skeleton really only contains the bones and can be used
to inspect how moving a particular bone would influence the skeleton, while the skeletal
mesh component is rather focused on the 3D-mesh aspect of the skeleton. So while having
similar names, these components do rather different things.

4.2.2.2 Base movement with and without VR

To be able to move the skeleton within the game, a BP_PR2_Character was created,
which is a character blueprint representing the PR2 within the name. It is linked to the
imported mesh of the PR2 and is pretty much responsible for how the character interacts
with the Virtual Reality environment. It takes care of essentially everything except the
skeletal animation, which is being computed within the PR2_Anim_BP, which is an
animation Blueprint associated with the character.

One of the very first things that got implemented was the characters movement based
on button-press on the keyboard. Even though later on the movement got taken over by
VR entirely, for the beginning phase of the project it was very useful to be able to move
the PR2 with the keyboard. Within the projects input settings, the w,a,s,d,q,e-keys
were mapped to input axis of the Engine. E.g. whenever the button w would get pressed,
a value of 0, 5 gets generated and sent to the according input axis event. Whenever this
happens, the forward vector is being obtained based on the position of the PR2 mesh, or
later on, the VRCamera object. This vector as well as the value of the axis input is then
being passed on to the Add Movement Input node, to generate the according movement.
For general testing with the standard view port of the engine this is completely fine. While
when using VR and the VR Previw view port, using this movement can cause motion
sickness.

Figure 5: part of the BP_PR2_Character Blueprint, showing a part of the implementation
of key-press based navigation/movement.
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In order to include the HTC Vive headset and motion controllers into the movement ca-
pabilities, a few more objects needed to be created and attached to the BP_PR2_Character.
First, a scene component was added. Scene components are similar to the empty objects
in Blender. They are essentially objects which do not have any mesh or other visual
component, they are just a point or a coordinate system, that can be placed in space
in order to reference a transform in the virtual space. They can also be used to set
up parent-child dependencies between the objects. One of these components is called
VR_Origin and represents the origin point of the VR setup, as the name suggests. It has
a position of x = 0, y = 0, z = 0 relative to the PR2 mesh, which is its parent. It has three
children, two motion controllers, MC_Right and MC_Left and the VRCamera, which is the
camera component that gets possessed by the player, or rather the HTC Vive headset
and generates the field of view that the human user perceives.

The movement mapping of the headset to the PR2 character might be set up a bit
unconventional. It just developed into what it currently is based on testing and based
on how some solutions were found and developed over time. If set up completely from
scratch, it might result in a completely different solution. But this is currently what is used:

Figure 6: Navigation based on the position of the Head Mounted Display.

The position of the Head Mounted Display (HMD) is being obtained in device space.
The X, Y components are being extracted, since the Z component which represents the
height of the headset does not matter for navigation, it is being ignored and replaced with
−90. This value is important, because the BP_PR2_Character has a capsule as its root
component, and the skeletal mesh if not given an offset, would be located in the middle of
that capsule. So in order for the PR2 to not float in the middle of the capsule, he has this
Zoffset, which of course needs to be maintained throughout navigational position changes.

To correctly rotate the PR2, was a whole other issue. The rotational Z component
can be easily obtained, but if it is applied directly to the mesh or the root component, it
would cause interesting side effects. Either the robot would rotate but not around the Z
axis of itself, but some other point in space, which results in the robot driving around
in a circle like a car instead of rotating in place. This would also cause the VRCamera
not to follow but to just stand in place, leaving the PR2s body and watch him rotate,
until after 360◦ he would be at the original position again. Or, the mesh would rotate
correctly around its own axis but the motion controllers would fly away on rotation, since
they would rotate around the same origin point the PR2 initially wanted to rotate around
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also. So the solution to this problem was to save the Z rotational value in a variable, pass
it to the PR2_Anim_BP where it is used within the Animation Graph to rotate the PR2s
pr2_empty bone, which is the origin of the mesh.
As previously mentioned, this solution probably came to be due to an error in the initial
setup and how objects are inheriting from one another, but it works.
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4.2.3 Skeletal Mesh Animation using Inverse Kinematics

In order for the robots body to be able move its arms, the original idea was to use the
inverse kinematics nodes Unreal Engine provides. It would be possible to define an inverse
kinematics chain, describing the arm of the robot, e.g. from the shoulder_pan_link to the
gripper_palm_link, setting the gripper_palm_link as the end-effector, and mapping its
pose to a VR-motion-controller. The position of the base of the robot would be mapped to
the VR-headset, ignoring the z component of the pose since the robot should be positioned
on the floor and not mid-air, as is also described in the previous section.

All the Unreal Engine skeletal control nodes can be found within the animation
blueprint, which is associated to a skeletal mesh, which in this case is the skeletal mesh of
the PR2 robot. This means that the inverse kinematics is animation based only.

Unfortunately, this did prove to be a lot more labor intensive and harder than it sounds.
In games development, the focus of the animation is to look good. In our case, the focus
was not only to make the animation look a certain way, but it had to behave a certain way.
It needs to mimic the robots capabilities as closely as possible, and this involves moving
the arms in a way the real robot would be able to do too. This means that each joint has
to be restricted in the same way as it would be on the real robot, or at least as close to
the real robot as possible. For the PR2 robot this means that the joints have to be limited
on a per-axis basis, since each joint has a certain range of motion on one axis only, since
most of the joints are revolute, and others are continuous. Without these restrictions, one
would be able to move the arms of the robot within VR in ways which would look broken,
dislocated and which would be impossible for the real robot to achieve. Since the goal of
this thesis is to try and collect better data for the robot to use as a baseline to perform a
task, and to limit the human user to the capabilities the robot provides, these limits are
crucial. A little difference between the real robot and the animated version within VR
can be expected, but the closer the Unreal-Robot is to the real one, the better and more
useful the collected data will be.

Before we dive into detail of all the different approaches which were tried, here is a
tabular overview of them, which nodes they involved and what their main result or issue
was, hence why they failed to become the end solution. It mainly boils down to being
able to set bone or joint constraints on a per axis basis, to replicate the PR2s movement.
It will also mention a few IK nodes which will not be explained further into detail in the
upcoming section, where the sentence within the table is enough to explain why they
could not be used.
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Used node combina-
tion Result

CCDIK IK with only symmetric rotational limits per joint. Can-
not apply limit per-axis.

CCDIK + ApplyLimits Limits are applied after the IK calculation, shifting the
end-effector away from the goal.

FABRIK No option to set limits at all.

FABRIK + ApplyLimits Limits are applied after the IK calculation, shifting the
end-effector away from the goal.

Two Bone IK PR2’s arm has more than two bones in a chain.

Leg IK Always takes the floor into consideration, leading to very
weird configurations. Allows limits, but it’s not enough.

CCDIK + ApplyLimits +
CCDIK + ApplyLimits

Recalculate IK after moving it into limits. This can be
repeated several times. Improves the result but does not
reach goal.

FABRIK + ApplyLimits
+ CCDIK + ApplyLimits

Similar to previous, although slightly better, closer to
the goal.

CCDIK + ApplyLimits +
elbow goal

Split the IK chain in half, at the elbow. Calculate upper
arm and lower arm IK separately. Generates nice elbow
behavior, but the limits do not act correctly.

CCDIK + Physics Asset

Generate a physics asset for the PR2, including setting
up all joint constraints within physics. Looks good in
physics asset simulation, behaves strangely/breaks in the
game world on play. Also CCDIK ignores physics limits.

FABRIK + Physics Asset Similar to the above. Also ignores physics constraints.
CCDIK or FABRIK +
Physics Asset + Anima-
tion/Physics Blending

Does not reach goal. Similar problem to ApplyLimits
that CCDIK and FABRIK bot ignore the physics asset
constraints

Virtual Bones + any IK

Summarize upper arm and lower arm bones into one
virtual bone each, have only the elbow joint defined. IK
ignores virtual bones and does not see them as a chain,
even if they are chained.

KDL based PR2 IK Node Takes limits into account, does not always find a valid
configuration but works.

Table 2: Overview of all the IK approaches tried within this thesis.
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4.2.3.1 CCDIK

The core idea of using an inverse kinematics node is also largely based on the CCDIK
(Cyclic Coordinate Descent Inverse Kinematics) node, which is a newly added experimental
feature in Unreal Engine, and which on the first glance provides a way to set limits.

Figure 7: Settings options for the CCDIK Animation Graph Node

However, after some research and trial and error, the limits set within the node are all
meant to be symmetrical, and not on a per-axis basis. Meaning that this limit just limits
the motion across all axes, and not a single one, like would be needed. This leads to im-
possible configurations, which look broken and wrong, but the goal position can be reached.

Figure 8: Some of the disjointed states of the PR2 arm, while using the CCDIK node
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4.2.3.2 CCDIK + Apply Limits

In order to fix this and try to apply some realistic PR2 limits, the idea was to use the
ApplyLimits node, which allows to set max and min limits between -180 and +180 degrees,
on an per-axis basis. Placing this node after the CCDIK node however, results in the
application of these limits after the CCDIK calculations, which moved the arm away from
it’s goal. Placing this node before the kinematics node has no effect, since the kinematics
calculations will not take the limits into account at all. Another closely related idea to
this approach was to chain multiple CCDIK and ApplyLimits nodes together, in the
hope that for the second ik node, the input position will be one which was moved closer
to the goal already by the previous ik node and had the limits applied to it, so maybe it
could move it closer to the goal again and the limits can be applied again to, in a way, try
and force it to get closer and closer to the goal. While this slightly improved the result, it
didn’t solve the issue that with these limits, the goal position could not be reached.

Figure 9: By rotating the shoulder_pan_link away from the goal (green circle) and allowing
the upper_arm_link to rotate at all and bend the elbow, the goal position could be
reached. However, CCDIK and the ApplyLimits node do not work well together
and cannot reach the target goal.

Also some of the limit application yielded weird results. For example, the up-
per_arm_link is able to rotate beyond 180 degrees in one direction. This is impossible
to be set with the settings. Adding an offset did not seem to shift it and it seemed
to actually block the movement if it reached 180 degrees and not allow it to rotate
further, even if it should be possible with the given offset or setting the limits to -180
and +180 degrees. There also seems to be a known bug with this node, that the min
and max values for X and Z axis seem to be swapped.34 This meant that for the shoul-

34ApplyLimits-Node bug report: https://issues.unrealengine.com/issue/UE-66293 (last accessed:
30.11.2020)

32

https://issues.unrealengine.com/issue/UE-66293


4 Approach and Implementation

der_pan_link, which movement should be only around the Z axis, it needed to be set in
the settings as around the X axis. This just led to overall confusion when setting the limits.

4.2.3.3 FABRIK

Another inverse kinematics node that could be used is the FABRIK node, which is an
implementation of the FABRIK algorithm35 which in the original version of the algorithm
does not support joint limits, but in an extension36 developed a few years later, does.
However the Unreal Engine node of this algorithm does not have the ability to set any
limits at all, but the idea was to see if it maybe interacts better with the ApplyLimits
node. Unfortunately, it did not. It reached the goal in a more straight-forward fashion
than CCDIK did, but it distorted the arm even more away from the goal once the limits
were applied. Applying limits seemed to work the same way with FABRIK as it did with
CCDIK, meaning that they got ignored completely. After some research it was found that
generally, the FABRIK algorithm itself supports axis-based limits, but that this feature of
the algorithm just simply haven’t been implemented yet.37

4.2.3.4 Other IK Nodes

Unreal Engine has a few more inverse kinematics nodes, for example Two-Bone-IK,
Leg-IK and Spline-IK, but most of them just consider very small IK-chains of just two
links and a joint (hence the name Two-Bone-IK), or have very specific uses. For example,
the Leg-IK node allows to specify limits, but always considers and aims towards the floor,
which defeats the purpose of using it for an arm. Trying to use the Two-Bone-IK while
creating Virtual Bones which essentially allow to divide the arm into two parts, the upper
and lower part with the elbow as a joint, didn’t work that well either.

4.2.3.5 Split CCDIK and ApplyLimits to Parts of the Arm

So if one very long chain is a problem and the joint-limits cannot be set properly,
it was tried to split up the chain into two parts for the IK-solvers. This means, that
instead of defining the arm in one node, it will be defined with two nodes. The first going
from shoulder_pan_link to elbow_flex_link, and the other would go from elbow_flex_link
to the gripper_palm_link. This approach also means that two goal positions would be
needed: one for the end effector, gripper_palm_link and one for the elbow elbow_flex_link.
In order to know where to place the elbow_flex_link, a pose was calculated based on the
motion controllers current position. Basically, the forward vector of the motion controller
is obtained so that it is known where the controller is pointing to, and based on this the
35[2]: Andreas Aristidou and Joan Lasenby. “FABRIK: A fast, iterative solver for the Inverse Kinematics

problem”. In: Graph. Models 73.5 (Sept. 2011), pp. 243–260. issn: 1524-0703. doi: 10.1016/j.gmod.
2011.05.003. url: http://dx.doi.org/10.1016/j.gmod.2011.05.003

36[1]: Andreas Aristidou, Yiorgos Chrysanthou, and Joan Lasenby. “Extending FABRIK with Model
Constraints”. In: Comput. Animat. Virtual Worlds 27.1 (Jan. 2016), pp. 35–57. issn: 1546-4261.
doi: 10.1002/cav.1630. url: https://doi.org/10.1002/cav.1630

37Angle Contraints for FABRIK Node:
https://forums.unrealengine.com/development-discussion/blueprint-visual-scripting/
40344-fabrik-node-doesnt-respect-angle-constraints (last accessed: 30.11.2020)
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motion controller pose is offset backwards by an amount which was estimated with trial
and error.

Figure 10: It can be seen in the left image, that this approach provides a better elbow
movement, and reaches the goal in some configurations. However as can be
seen in the right image, just a little rotation can shift the entire result by a very
large margin.

This would allow for a nice behavior of the elbow, since now it was actually trying to
bend outwards away from the body while the palm link would try to go inwards. The
ApplyLimits node could me monitored here a lot easier also, since it was responsible for
just a few bones instead of the entire chain, which allowed for more easier debugging.
Unfortunately, this does not solve the limit problems entirely either but allowed for a
more natural looking animation, at least in regards to the elbows behavior. For some
other bones, as for example the upper_arm_link, which had issues with the ApplyLimits
node as described above, a manual offset can be added using the Transform-Modify-Bone
node, which allows to completely freely modify bones.

Figure 11: The nodes setup necessary to achieve this motion. It does not need to be viewed
in detail it should just visualize how many different nodes are needed to get this
sort of interaction, and that even then it is not yet perfect.

This approach, while the most promising, was very setup-time intensive, contained
a lot of calculations to try and calculate parts of it manually, was rather not reliable
and really hard to maintain. If no other approach would have been found, as it will be
described below, this might have been the end solution. It would have not been perfect,
but it would be acceptable, even if some movements would cause the arms to look crazy
and disjointed.
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4.2.3.6 CCDIK with Physics

While looking for a way to constrain the Unreal Engine IK somehow, it was discovered
that joint limits for a skeleton can be set within the physics asset of the skeletal mesh.
Each skeleton imported into Unreal Engine, by default, will generate a physics asset which
is used to compute collisions, forces and other physics-based events between objects. In
order to make collision detection more efficient, primitive shapes like spheres, cubes or
capsules are used. Usually a capsule would be created around a bone and the mesh. Then
constraints can be set between the shapes. There are no limits as to how many constraints
can be set for an individual shape or bone. The auto-generated asset only contained three
capsules, one for the torso and one for each arm. This of course, would not be enough. So
a capsule for each bone in the arm was created with the according constrains.

Figure 12: On the left: the inactive physics asset with all the currently setup capsules
defining the constraints. On the right: the physics asset during simulation. The
right arm is being positioned by a mouse click.

Each constraint can limit a joint for translation or rotation alongside an axis. The
rotational constraints however are not referred to as XYZ, but rather Swing 1 Motion,
Swing 2 Motion and Twist Motion. Swing 1 and Swing 2 each allow to constrain the angle
of motion around the XY and XZ pane, which are supposed to be the symmetric angles
of a cone, and Twist is limiting the symmetric angle of roll along the X-axis. While these
limits are still not quite what is needed, since they are symmetric and the PR2’s range
of motion of the individual joints is not, they were looking quite promising within the
physics-asset simulation. The PR2 could essentially be used as a rag-doll there. However,
unfortunately the physics did not interact well with the rest of the environment and with
the animation blending. Animation blending in this case means that it is possible to
set a value alpha, between 0 and 1, which would describe the strength of the two inputs
against each other. Meaning, that if the physics blending is set to 1, everything within
the Animation Blueprint will be ignored and only physics will be used to move the robot
and vice versa. Setting it to 0,5 allowed for a good mix between the two, but often times
it seemed like the IK within the Animation Blueprint, was not strong enough to move the
arms of the Robot to where they were supposed to be. Motors could be added within
the Physics Asset to drive the animation, but the individual values to drive these motors
cannot be mapped to the IK result, since the IK result is an Animation Pose and does

35



4 Approach and Implementation

not provide access to the individually computed values for the individual joints. This
also caused occasionally very weird effects at run-time. With some settings, the robot
would float in the middle of the room or fly away out of it, hectically move the joints and
fall apart entirely, fall through the floor or have one arm fly off. This also didn’t tackle
the essential problem of not being able to apply the limits to the IK solver, so that they
could be respected during computation of the new pose. It was only another way to apply
limits after the computation, and as seen before with the ApplyLimits node, this will just
shift the end effector out of its goal position. Maybe there is a way to get it to run with
the help of the physics asset, and I just lack the experience to do so, but it seemed to
simply introduce more problems than providing a good solution.
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4.2.3.7 KDL

After all these attempts which yielded rather unsatisfying results, it was clear that
Unreal Engine at the time of writing this, does not have a good and free inverse kinematics
solver which would respect joint limits on an axis basis. There were mentions of other IK
plugins found, but they were not open source and not available for free, unfortunately. The
best way to get the virtual PR2 robot to move as similar as possible to the real world would
be to use the same inverse kinematics solver within the Animation Blueprint as is used on
the real robot. There are several options for the PR2 out there, all with their own benefits
and downsides, but the best solution seemed to be to use the Orocos-KDL(Kinematics
and Dynamics Library)38 and the Newton-Raphson39 position IK-Chain solver with joint
limits. This solution had four developmental stages:

1. Create a custom Node for the Animation Graph.
2. Import the KDL library into this node.
3. Create a kinematic chain based on the given inputs, including joint limits.
4. Calculate the correct transforms.
Creating a new custom Node for the Animation Graph

In order to be able to use the KDL library for the animation in Unreal Engine, an
animation graph node needs to be created, which will be the interface between Unreal
Engine and the KDL third party library. After some research, another custom animation
graph node was found40, which was used as a basis. This template also wraps the node
already into a plugin structure, which is very useful, since this will not be needed to be
implemented later on, in case this should become a public plugin.
Generally, an animation graph node contains two components. The code for the node
itself, in this case AnimNode_PR2IK.h and AnimNode_PR2IK.cpp, and the code which
describes how this node appears and behaves like within the Unreal Engine Editor and the
Animation Graph: AnimGraphNode_PR2IK.h and AnimGraphNode_PR2IK.h. The later two
don’t really do that much so they won’t be explained further, but the AnimNode_PR2IK.cpp
will be explained in more detail below. At this point it simply needs to implement certain
functions it is inheriting from and that is that.

38KDL: https://orocos.org/kdl.html
39[6]: A. Goldenberg, B. Benhabib, and R. Fenton. “A complete generalized solution to the inverse

kinematics of robots”. In: IEEE Journal on Robotics and Automation 1.1 (1985), pp. 14–20. doi:
10.1109/JRA.1985.1086995

40Custom Animation Graph Node: https://github.com/dawnarc/ue4_custom_anim_graph_node
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Figure 13: On the left: the PR2 IK node within the animation graph. On the right:
exemplary settings for the PR IK node

Importing the KDL library into the Custom Animation Node
This has proven to be more tricky. Not only is KDL needed, but the Eigen41 library, since
KDL has a dependency on it. The first approach was to follow a tutorial42. However
that did not work initially, since the libraries imported there, were already build while
Eigen and KDL were not. The idea that since Unreal Engine uses Microsoft Visual
Studio43 to build everything, and since Visual Studio with a plugin can build CMake
files (as explained in this tutorial44) it might also be able to build Eigen and KDL, failed
unfortunately. Another approach was manually build these libraries by hand and import
them into the Plugin. This is not the most elegant solution, and it remains to be seen if
there is a more elegant one, but it worked. Some other tweaks were however also needed.
For example, the Eigen library contains exclusively header files. However, they do not
have a .h extension, so Unreal could not find them. The solution was to add the extension
there manually. This unfortunately also needed to be done with all the includes where
KDL references Eigen or Eigen references itself. They also needed to be specified with
the correct extension. After this was done, it was finally possible to use KDL within the
animation graph node.

Creating a Kinematic Chain based on the Input received
The PR2_IK node within the animation graph needs to get the two end-points of an IK
chain to be defined. These can be selected in the settings of the node, in the Tip Bone and
Root Bone. For the right arm the Tip Bone is set to the r_gripper_palm_link and the
Root Bone to textttr_shoulder_pan_link. In order to set the limits, one can expand the
list under these settings, select any bone and set which axis should be limited, if the joint
is fixed or revolute and the min and max limits can be set in radians. Another feature is
the default bone angle field. It allows to define the starting point for the joint. This is
used to create PR2s initial position, where both arms are bend at the elbow and facing
down slightly. If the arms remain outstretched, maintaining the default position given
by the URDF, the IK will have a harder time finding a valid configuration for nearby

41Eigen library: http://eigen.tuxfamily.org/ (last accessed: 06.12.2020)
42Importing a third party library into Unreal Engine tutorial: http://www.valentinkraft.de/

including-the-point-cloud-library-into-unreal-tutorial/ (last accessed: 06.12.2020)
43Microsoft Visual Studio: https://visualstudio.microsoft.com/de/
44CMake with Microsoft Visual Studio: https://docs.microsoft.com/en-us/cpp/build/

cmake-projects-in-visual-studio?view=msvc-160
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poses. A default pose can also be defined via animation blending, but this might lead to
some bad side effects, in which the poses are permanently offset for the IK solver. This is
what seemed to happen during debugging, but could be investigated further in future work.

The main development is within the EvaluateSkeletalControl_AnyThread(...)
function. First, all members of the IK chain are found by iterating from the Tip Bone
to the Root Bone and adding every found parent which does not match the Root Bone
to an array of pairs, where each pair contains the bone name and the Unreal Engines
internal bone index. Every bone within a skeleton has a unique autogenerated index
received upon import. Since the obtained array contains the bone references in tip to root
order, and the IK solver requires them in the root to tip order, the array is being flipped
to correct this. Then another array gets initialized, which contains all the default values
for the bones. If the IK has already moved the bones previously, then this step is skipped
since the array will contain the previously calculated poses of the joints, aka. the previous
state, which is used as a seed state for the solver.
Before any poses can be fed into the IK solver however, the difference in units needs to be
accounted for. In Unreal Engine, poses in world and component space are calculated in
centimeters, and local space transforms are represented in meters. KDL requires poses to
be in defined meters also. Therefore some conversions need to be made to match the differ-
ent units to one another. Since there were some issues with scaling, the scale parameter of
all transforms received from the Unreal Engine is by default set to 1.0, 1.0, 1.0, to ensure
that it stays correct and does not accidentally get affected by transform multiplications.

Before the IK chain can be created, the corresponding KDL::Joint and KDL::Frame
objects need to be defined. Once again, the list of all bones is iterated upon and for each
bone a KDL::Joint object is created, containing the axis of rotation specified earlier in
the settings of the node. The KDL::Frame contains the location vector of the bone in local
space. Once both of these objects are generated, they are both added to the IK-chain,
which combines these two elements into a KDL::Segment. At the same time, two lists of
joint limits are generated, one for the maximal and the other for the minimal joint angles
specified in the node. The input to the KDL solver is not only the IK-chain but also an
array of joint angles of the previous KDL computation or the default angle state given in
the settings of the node.

Calculate the necessary Transforms
The parent bone of the root bone is obtained, which in this case is the torso_lift_link
and the goal transform, which originally is provided to the node in world frame, is being
recalculated to the torso_lift_link frame. It is important to note, that within ROS
transforms in a product are usually applied from right to left and in Unreal Engine, they
are applied from left to right. This initially caused a lot of errors.
In order to apply this transform, the transform of torso_lift_link is obtained in com-
ponent space. The values of the location component are divided by 100 so that they
are converted from centimeters into meters. The scale is set to 1.0, 1.0, 1.0 for reasons
previously mentioned, and an offset of about 90 degrees is added around the Z axis to the
rotation component. This offset is there because the stretched-out arms of the PR2 when
pointing forward, are not in their 0 position rotation wise. Instead, they have an offset of
+90 degrees around the Z axis, which needs to be compensated by an additional transform
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multiplication of just this offset. The code snippet, performing these calculations is the
following:

1 FTransform RootTransformComp = Output . Pose .
GetComponentSpaceTransform (Output . Pose . GetPose ( ) .
GetParentBoneIndex ( RootIndex ) ) ;

2 RootTransformComp = FlipTransform (RootTransformComp ) ;
3 RootTransformComp . SetLocat ion (RootTransformComp .

GetLocation ( ) / 100) ;
4 RootTransformComp . SetScale3D ( FVector ( 1 . 0 , 1 . 0 , 1 . 0 ) ) ;
5 FTransform adjustYaw ;
6 adjustYaw . SetRotat ion (FQuat( FVector (0 , 0 , 1) , 3 .14159 /

2) ) ; //arm o f f s e t r o t a t i on
7 FTransform GoalInBoneSpace = adjustYaw∗

Sca ledEf fectorGoalTrans form ∗ ComponentTransform .
Inve r s e ( ) ∗ RootTransformComp . Inve r s e ( ) ;

The types are FTransform since this is the transform-type Unreal Engine works with.
After this calculation, the scale is being fixed again, and the same operations are being
performed for the calculation of the tip bone transform in torso_lift_link space.

Since KDL uses its own types for vectors and quaternions (e.g. KDL::Vector), the goal
pose needs to be converted into these types. After this, the solver is finally initialized and
computes the joint angles needed for the IK-chain to reach its goal. If the goal cannot
be reached and maximal amount of iterations is exceeded, an error message is printed and
the arms simply remain in their last known position. This is how the arms essentially can
get stuck. One can accidentally move them in a way that KDL cannot compute a solution
to move them out of the configuration. After this, the solution computed by KDL needs
to be converted into Unreal Engine’s units, meaning the location component back into
centimeters as well as the types need to be cast into Unreal Engine vector and transform
types again. The result is then applied to the skeletal mesh.

Most of the code needed to use KDL is essentially just parsing values from Unreal
Engine data types and classes into Eigen or KDL data types, and then back again. For
future work this could be generalized so that it wouldn’t need to cloud up the code needed
to run KDL and the necessary transform multiplications.

A feature is also the potential detachment of the grippers. They are always located at
the same pose as the goal which is sent to KDL, which is based on the motion controller
location within the VR world. When the goal is reachable and KDL finds a solution for it,
the arm will be attached to the gripper at the wrist and move with the movement of the
gripper. If KDL cannot find a solution, the arm will detach from the gripper instead. This
allows the human user to still see where the goal is, and also take notice that this potential
configuration does not seem to have a solution. The user can then try to reattach the
gripper by moving it close to the wrist again and try to move the arm out of the locked
configuration.

40



4 Approach and Implementation

Since the node currently includes specific mentions of the PR2 links, namely for the fea-
ture mentioned above, it is being checked if a name matches to e.g. r_gripper_palm_link.
Therefore the node is currently still called the PR2 IK node, since that call makes it PR2
specific. Once these references are removed or exposed to the node settings available
within the blueprints, it can be renamed into a general KDL node.

4.2.4 Unreal Engine: Animation of the PR2 robot

This section will describe in more detail which features were implemented within the
animation blueprint in order to create a realistically moving PR2 model.

4.2.4.1 Opening and Closing Grippers

The opening and closing of the gripper is mapped to the trigger of the motion controller.
Since the values of the trigger input are between 0 and 1, they are scaled up to be in the
range between 0 and 30. This range is based on the visible range of motion of the gripper.
These calculations look like this:

Figure 14: Scaling of the motion controller trigger value in order to be in the range of 0
to 30

Based on this value, within the animation graph one finger of the gripper, the
r_gripper_r_finger_link gets moved via the use of the Transform (Modify) Bone
node, which takes the value calculated based on the trigger and transformed into a
Z component of a rotator and adds it to the current rotation of the bone in bone
space. The r_gripper_r_finger_tip_link copies the resulting rotational movement
from the r_gripper_r_finger_link using the Apply a Percentage of Rotation node,
but since it has to rotate into another direction around its Z axis, the multiplied of −1 is
applied. This is repeated accordingly for the fingers on the left side of the gripper. The
resulting chain of movement can be seen in the following figure:

Figure 15: Opening and closing of the gripper based on a sequence of copying the rotation
of one bone.
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4.2.4.2 Grasping Objects

Grasping objects is implemented based on ray tracing between the fingers of the
gripper. A socket within the skeletal mesh is created, representing the origin point
from which the ray tracing should take place. The socket is in the same position as the
mesh_r_gripper_r_finger_tip_link, since it is defined as its child. The reason for the
use of a sockets is, that it is easier to access via blueprints than a bone would be. The socket
will however follow the pose of its parent bone. Within the BP_PR2_Character another
scene component, RightHand_Grasping_Point is added, which follows the position of the
socket and to which a SemLog object is parented. This object is important for generating
grasping events, but this will be discussed later on in this chapter. Based on the location
of the RightHand_Grasping_Point and if a pickup event occurs, which occurs once the
trigger of the motion controller is pressed, the ray tracing event is triggered. A short ray
is being projected between the fingers of the robot and if another object is in between
them, and this object is a bowl, cup or spoon, it is attached to the gripper and its
physics simulation is being disabled. If it would not get disabled, the object would very
likely slip out of the gripper or move weirdly during the transporting event, since it is
essentially attached to only one point it tends to wobble and rotate. Once the motion
control trigger is released and if an object is currently held, the object is released and its
physics simulation is enabled again.
A physics handle in order to perform physics-based grasping was also implemented
and tested, but for the current setup which is very animation heavy, the attachment
implemented in the way above is just more robust and easier to work with from a user
perspective.

4.2.4.3 PR2 Head motion

In order for the PR2 model to feel more responsive to the user, the robots head
movement was mapped to the HTC VIVE Headset. The rotation of the headset is being
obtained and the Z and X components are extracted. The Z component is being put
back into an empty rotator and passed on a Transform (Modify) Bone which applied
this rotation to the head_pan_link. The same is being done with the X component, just
that this time it is applied to the head_tilit_link.
Depending on if the PR2s body-rotation is mapped directly to the headset or to buttons
on the motion controllers, this implementation might be less visible. In the first scenario,
only the up and down movement of the head will be seen by the user, since the rotation
from side to side is also followed by the body. With the second navigation scenario, the
head would be fully movable.

42



4 Approach and Implementation

4.2.5 Robot to Human Body Adaptation

This section will cover the measures taken to try and make the usability of the virtual
robot as natural and intuitive for the human user as possible. This will also cover how
some differences between the two bodies were handled and addressed, and which solutions
were found to try and eliminate these differences.

4.2.5.1 Gripper and Arm Range Extension while Compensating for Torso
Bending

As also already mentioned in her thesis by Zihe Xu[20], the PR2’s arms are longer than
the average human ones. However, a human is able to compensate for this by bending the
torso forward, while the robot cannot. In order to mimic the robots limitations as closely
as possible, bending of the torso should be avoided since in a grasping scenario, it would
also move the position of the VR camera closer to the surface from which the object is
being picked up. Since the base position of the robot is being calculated based on the
VR Headsets position, this can lead to the robots base colliding with the environment.
In order to avoid that, bending the torso forward should either be prohibited, or not
necessary. It was already attempted in a previous approach[20] to prohibit the bending of
the human torso by attaching another tracker onto the human users chest and providing
visual ques accordingly. However, this only had limited success. While investigating this
same issue and trying to solve it based on the headsets position alone, it was also found
that just by looking down while wearing the headset, the Z component of the transform
which describes the height position, varies so much, that it would be very likely nearly
impossible to differentiate between the bending of the torso or just simply looking down.

Therefore the attempt in this thesis is to render it unnecessary for the human to bend
the torso in the first place. To achieve this, the human user is able to move the detached
grippers forwards or backwards, basically reaching forward beyond the motion controllers
position. This allows to deal with two issues at once: It allows to compensate for the
difference in arms length between the human and the robot, since the human can now
virtually extend the grippers beyond the length of the users arms, and it allows to avoid
the bending forward issue, since it is now less effort to just press a button instead of
having to bend forward to reach for something. Of course, this effect applies more over
time, the longer the system is being used by the human. This feature also helps with the
initial adjustment of the human user to the robots shape, since a comfortable position to
maneuver the robots arms can be found within a few seconds after launching the project.
From a personal perspective, it almost feels like stepping into a robot-suit.

The position of the Grippers is computed based on the current position of the motion
controller. The forward-vector is obtained, and scaled incrementally, depending on how
long the up (face button 1) or down (face button 3) buttons on the track pad of the
controller are pressed. The grippers are then offset into the forward or backward direction
accordingly.
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Figure 16: Gripper detachment feature. the green circle shows the position of the motion
controller, while the orange circle shows the position of the gripper and how it
can be extended.

Figure 17: A part of the blueprint which is calculating and scaling the forward vector, in
order to adjust the robot to humans arms length.

4.2.5.2 Mirror

In order for the human user to get a better understanding of how the robots body
behaves based on the provided input, a very large mirror was setup within the VR
environment. The mirror was simply created by creating a rectangle mirror body, which
essentially is just a flat cube object, which got a very reflective material applied to it, and
which is encapsulated within a planar reflection component. The mirror is overall very
useful and can be also used for when an arm gets IK-stuck out of the field of view. It is a
very simple but also effective solution.

Figure 18: A mirror object to help the human user to settle into the robots body.
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4.2.5.3 Body height adjustment

Not every human user is the same height as the PR2, and since the VR Headsets height
is based on the human users height, the PR2 needs to adapt accordingly. If the robot does
not adapt, manipulating the VR world through the robot gets an unpleasant uncanny
feeling, since the human user is either stuck in the middle of the torso and the shoulders
and arms height of the robot do not match up with the humans at all, or the user could
be floating above the robot, experiencing similar issues. In order to avoid that, depending
on the height of the human, the torso of the PR2 is moved up or down.

Figure 19: Body height calculations.

Some of these values might seem rather large on the first glance, for example the Clamp
(float) node is set to 70, which is a rather large value to add towards the height of the
robot. The value is divided by 1, 5 in order to scale it down again. This is done because if
the mapping is setup in a one to one way, the body ends up shaking, since the headsets
height varies constantly to some degree also. After some trial and error, this seemed to
be a good solution to the otherwise very jumpy torso problem.

4.2.6 Adapting USemLog to collect VR data

In order to be able to log everything the human does within the Virtual Reality
environment, a logger is needed. USemLog is a plugin for Unreal Engine providing just
that. However, since this thesis uses the pipeline developed prior[10][11], and since the
new version of KnowRob, at the time of writing this is not yet complete, it was decided
to stick with the old KnowRob and therefore also the old USemLog 0.245 version.
In order to setup the logging, different objects needed to be added to the VR environment,
depending on what kind of event needs to be tracked. Also, each object need to be defined
within its Actor - Tag property, as a dynamic or static object. Other properties can be
of course given also. E.g. what class an object belongs to or which mesh should be loaded
for its representation. For example, the Tag of the PR2 robot looks like this:
SemLog;Runtime,Dynamic;Class,PR2;PathToSkeletalMesh,package://robcog/Content/Models/PR2_model.;Id,SoVP;
The ID is always autogenerated, whenever the Generate New Ids button is pressed within
the SemLog plugin. All dynamic objects can be moved, while static objects stay where
they are. This differentiation is important. When this tag is provided, raw data, meaning
the position of the object within the world is being recorded to a json file. Since the PR2
45USemLog 0.2: https://github.com/robcog-iai/USemLog/releases/tag/v0.2
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is a skeletal mesh object, the position of every bone is being recorded.
In order to be able to generate contact events between objects, an SLContactManager
object needs to be added to the surface, in a way encapsulating it. These objects were
added for the kitchen island and the sink area, since these are the surfaces which hold the
objects for the performed pick and place tasks.
I Generating grasping events was a bit more tricky. This event generator is essentially
bound to an implementation of the motion controllers within the UMCInteraction46. Since
motion controllers were already setup and defined for this thesis, the code of the UMCIn-
teraction plugin was altered and decoupled from the motion controllers. Fundamentally,
a sphere is attached to the gripper of the PR2. Whenever something overlaps with this
sphere, a grasping something event is generated. This solution was very hacky and is not
necessarily stable, but it works and generates some data.
In order to be able to generally log data, two more objects need to be added to the world.
These objects are: a SLFurnitureStateManager which, as the name already suggests,
logs the state of all the furniture items within the world, and a SLRuntimeManager, which
generally contains settings as to how often raw data should be recorded and similar.
Since there was not much documentation about this very old version of this plugin, it
could be that the setup is wrong, since it was essentially reverse-engineered based on an
old RobCoG project version. It does generate data, but does not seem to be as accurate
about it as former data sets suggest.

46UMCInteraction plugin: https://github.com/robcog-iai/UMCInteraction
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5 Experimental evaluation
5.1 Evaluation of the VR-PR2-model and behavior

This section will discuss how the generated PR2 model behaves within the VR environ-
ment, based on the overall look and feel from a user perspective. It will be described how
it feels to pilot the PR2 and to be inside the robots body, how responsive the system is,
which features it contains and which flaws. It will be also discussed how performing a pick
and place task as the PR2 robot compares to performing the same task with the previous
method of just piloting human hands within the VR environment. This comparison will
unfortunately be only subjective, since it is currently impossible to conduct a proper user
survey because of the current pandemic. However due to my personal previous experience
with the RobCoG, hands-only-VR system within my Bachelors thesis and the evaluation
performed for a paper I will try my best to make a fair comparison between the two
systems.

5.1.1 Differences between the systems based on general differences between the
human and robots bodies

The following sections will discuss the general differences between the human and
robots bodies, as well as how the two different systems, meaning the RobCoG approach
with only human hands in VR and the new approach in this thesis of having the robots
body in VR, compare to one another, based on look and feel for the human user, as well
as how these differences of the bodies might play into the data acquisition process for
teaching the real robot to perform everyday pick and place tasks. Some aspects which
are described in the general look and feel section are results of the mapping between the
human to robot body and the reasoning behind them will be explained in their respective
sections.

5.1.1.1 General look and feel

The RobCoG system allows for a lot of freedom for the human user. Since one only
has to essentially focus on the virtual human hands, and not have to take into a count
any sort of body, one can really focus on grasping objects, from which angle and direction
to grasp, and to try and make the grasps as realistic as possible, if one wishes to. Since
the objects attach to the palm of the hand however, some grasps are harder to perform
then others. For example, grasping the spoon is probably the hardest one. In order to
grasp it, one has to press essentially the hand completely onto the surface on which the
spoon is located, so that it can get in reach of the palm, in order to be grasped. This is
not necessarily a realistic grasp, neither for the human nor the robot, but this is a rather
extreme example. Navigating the virtual environment is rather easy, since, again, one does
not have to worry about a body potentially colliding with things. It also allows to pass
through furniture, as long as the human user holds the hands in a way that they won’t
collide with the environment. For example, in order to place an object on the opposite
side of the kitchen island, one can walk through it, even though that feels weird for the
human user since the human brain obviously sees an object there that one usually cannot
just walk through, instead of having to walk around the kitchen island. This might sound
crazy at first but it can be beneficial, since the cable of the VR headset has a limited
length and this allows the user to reach positions which otherwise would be unreachable,
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limited by the size of the available real world environment and the mentioned cable length
of the headset.

Since the hands have physics objects defined on them, one can open drawers by hooking
the hand between the handle and the drawer and just pulling to open the drawer that
way. The collision occurring between the hand and the drawer handle will cause it to
open as expected. One can also push the drawers closed by just pushing on them with
the hand, without needing to grasp anything for it.

Overall the system is fairly intuitive to use, it is a lot of fun. The grasping takes a
while to get used to and some limitations of the system, like missing a physical body, can
be abused to gain some benefits where Virtual Reality might have been limited by the
real world.

The PR2 VR system is comparatively quite different. The human user now has a new
body that is very different than the real human body and which takes a while to get used
to. In order to ease in this transition, a full body mirror was created in which the human
user can observe how the robots body behaves based on the human movement. The robots
body follows the headset completely, including the rotation. This makes the navigation
of the robot within VR intuitive, but since one cannot rotate the head independently of
the body, it can in some specific cases be a hindrance. For example, if one wants to look
at the robots arm which might be just out the field of view, one cannot just rotate the
head and look at it. With the current implementation the human user would have to
walk back to the mirror, to see how exactly the arm is positioned. Since the grippers are
attached to the position of the motion controllers rather than being attached to the rest
of the arm, the intuitive first reaction is to attach them to the arms again, which can be
done by simply moving both grippers to the wrist. Since, as will be explained further
down in this chapter, the arms of the robot are a lot longer than the human arms, the
human user can move the gripper further forward or backwards by pressing buttons on the
motion controller. While this sounds like it might not be intuitive, it does feel intuitive.
From my personal point of view, it feels like one is stepping into an exo-skeleton, which
happens to be the PR2 robot. This feature also allows for the human user to stretch out
the PR2s arm beyond the humans arms length but within the robots arm length, allowing
for better robot base positions since now the user does not have to move that close to the
surface the objects to manipulate are located on. After a while, once one gets used to this
feature, it is noticeable that instead of stretching out the real humans arm in the real
world, it is preferred to just stretch out the virtual arm instead, while keeping the real
humans elbows rather close to the torso. After all, pressing a button requires less effort
than moving an entire arm.

Grasping objects is currently not physics based at all. This means that in order to
grasp an object, it has to be located between the two fingers of the gripper. This also
means that the grippers currently will always close completely in order to grasp an item,
going visually through it in the process. While this is not very realistic, for now it is a
decent solution that can be improved upon in the future.

5.1.1.2 Real world navigation mapping to VR

In RobCoG the position of the VR headset has no visual representation. It is just
the position where the human user is within the VR world. The position of the motion
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controllers follow the headset and are always positioned relative to it.
The VR PR2 also follows the position of the VR headset and also rotates with it.

However there are essentially two ways of setting up the rotation. In this case the rotation
of the headset was mapped directly to the body. Another option is to map it to two
buttons instead, so that the head can be moved completely independently of the body. In
earlier testing, the second approach was the original idea, to just rotate the body when
needed on button press, so that it matches the rotation of the headset again. However for
collecting data, it seemed rather tedious to always have to set the rotation manually, so
the first approach was rather implemented. However this is open to preference of the user.
Rotating the body of the PR2 including the camera on button press would however cause
motion sickness, so this approach was not followed further.

5.1.1.3 Robot to human height adjustment

Within the RobCoG approach, the height of the human user compared to the robot was
never an issue, since there was no body being visualized which might have been impacted
by it. The motion controllers were directly mapped to the position of the human hands in
the real world and that was completely sufficient.

However, when accounting for a robots body which needs to be mapped to the human
user one, height becomes an important concern. The robots torso need to move up and
down depending on the height of the human, within a limit, so that the head-position as
well as the arms and shoulders heights feel natural to the user. If the robots body is too
low, the viewpoint of the human is above the robot, the shoulders are way too low and
then the overall interacting experience suffers. Same applies for the robots torso being too
high up, which would lead to the shoulders being above the head and the viewpoint being
inside the torso of the robot. If any of these two cases occurs, it gives an uncanny feeling
to the user since one can see that something is not quite right. Therefore, the height of
the robots head is essentially mapped to the height og the VR headset, by moving the
torso of the robot accordingly to match the height.

This solution however has its own limits. One can argue that very small or very tall
people might hit the limit of the capabilities of the real PR2, since the torso only has a
limited movement space. In order to compensate for it, one could go above the PR2s
limit. It might not look too off visually within the VR environment but would have to be
accounted for later, when processing the data. For rather small people there might not
be such an intuitive solution. Moving the robots torso down has a fixed limit. It can be
forced down further but then it would also look ad feel wrong, since the shoulder-meshes
would collide with the base and essentially need to pass through it. There the solution
might lay in scaling the entire world down, or the PR2’s body. But that would be a rather
exceptional and rare case.

5.1.1.4 Human torso bending

The human user can bend the torso forward, in order to reach for an object and keep
the feet in place. This prolongs in a way, the arms reachability capabilities. While the
user can do so within the RobCoG game, which might lead to potential positions for the
robot which collide with the environment, since the head and therefore the headset on
which the base position is later based moves forward also, this is not possible to do with
the PR2 VR model. Of course the user can perform this movement in the real world, there
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is no stopping that, but the result in VR would just be not the expected one. Since when
bending forward, the head also moves forward, it would mean that the entire robot moves
forward in VR also, potentially colliding with the environment. Also the grippers might
detach from the wrist in this process and the human user learns quite quickly that this is
an overall undesired effect, not gaining the expected benefit to the situation. Instead it
is way more comfortable to stand upright at the same spot and just press a button to
stretch out the arm further. After just a few minutes, this adaptation is intuitively made
and the torso-bending is no longer a concern.

5.1.1.5 Human feet and the robot-base position

Humans have very small feet, compared to the PR2 robots base. Also our feet are
located directly under our head, while the base of the PR2 robot extends forward by quite
a margin. This generally means that the human can stand a lot closer to surfaces for pick
and place activities as the robot would be able to.

Within the RobCoG approach, there was nothing to account for this difference during
data acquisition. The human is not able to extend the VR hands to be able to manipulate
objects from more of a distance, and there are no visual ques at all for the position of
the feet or the size of the robots base. For the so collected data, this would mean that
the feet position is calculated based on the position of the VR headset, removing the z
component of the pose in order to project the position onto the floor. For the robot to be
able to use these poses to learn e.g. where the human was standing when he grasped an
object, an offset of 0.2 meters was added to the cameras position, basically projecting the
position away from the object, to make space for the robots base.

With this new approach of the PR2 robots body being in VR, the human user can
directly see the robots base and be therefore made aware of the limitations and potential
collisions it entails. Also, not only is the camera position tracked, but since the PR2s
body is a skeletal mesh, the position of each bone is recorded. Meaning that the position
of the base can be used directly, and no offsets need to be applied to it.

5.1.1.6 Human arms and robot arms

As previously mentioned throughout the thesis, the arms of the PR2 robot are a lot
longer than the human arms. One rather major difference is that the grippers of the PR2
are initially detached from the rest of the arm. The gripper locations are mapped to
the motion controllers, while the movement of the arm is computed by KDL. In order
to compensate for the length difference, the location of the grippers can be offset to
the the motion controller on button press. The grippers can move further forward or
backwards, however the human user prefers or needs. Some might prefer to have the
motion controllers as close to the grippers as possible and to stretch out the human arms
as much as they can, in order to achieve that, while other users might prefer to keep their
arms rather close to their body, and use this feature more instead. Generally, this feature
allows the human user to keep standing further away from a surface, keeping the distance
far enough to not collide the base with the potential surface base, and use the length of
the PR2s arms to an advantage. The detachment of the grippers also compensates for the
realistic scenario of KDL not being able to find a solution for the current configuration.
Instead of completely stopping the arms movement and potentially confusing the user,
the gripper only detaches. The user is than made aware by this that the current position
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or grasp attempt, might not be suitable for the robot. The user can then reattach the
gripper by moving it closer to the arm again and moving the arm to an overall better
configuration for the robot. Sometimes the reattachment does not work completely, and
as un-intuitive as it sounds, shaking the controller a bit can help. Sometimes however the
arm can get stuck entirely, and the project has to be restarted entirely to unstuck it. In
future work however, there could be a button implemented to just reset the arms position
to a default position to help unstuck them.

5.2 Result of the Evaluation of the VR-PR2-model and behavior
Based on the previous section and my subjective overall experience, the differences in

both approaches are many. With the PR2 model as a body inside of VR, the human user
has to keep a few more things in mind while performing pick and place tasks. One has to
keep an eye on the base, although after a while as a user one gets an intuitive automatic
estimation of where it is without having to look to check. Because the movement of the
arms is calculated by KDL, which occasionally might not find a solution, one has to keep
an eye on the gripper to arm connection, quite literally. While within RobCoG the focus
lies completely on the hands, here the focus is also on the overall arm position and how
it behaves. The resulting movement might be slower and more controlled since instead
of just watching what object one is grasping, the entire arm is being watched. It is also
pretty hard to keep both grippers attached to both arms at the same time. The resulting
solution was one of two things: either one performs the pick and place setup one arm at a
time, transporting all objects from the sink to the kitchen island one by one with first
only the right arm, and then with the other arm to essentially generate a full data set. Or
to keep the gripper to arm connection while performing one grasp, then basically ignoring
the detachment while the other arm is grasping and ignoring it during the navigation
portion between the kitchen island and sink area, and then attach the grippers again to
the arms while placing down the objects. The later solution is an acceptable one, because
for the real robot one can define stable carrying positions which can be used no matter
which object has been grasped and needs to be transported. Usually these carrying poses
would also want to move the arm out of the field of view, in order to not obstruct future
perception tasks, which is something the human user might want to avoid in VR, since if
the gripper gets detached while outside the field of view, one would need to go back to
the mirror to see and reattach it.

Collecting pick and place data with the PR2 body is overall very similar to doing so
with RobCoG. The differences are mainly that while collecting data with RobCoG, one
could either move completely freely and behave entirely like a human would, bending
forward if needed be, or choose to try to generate data which might be the most useful
to the robot later on. The later would require to always keep in mind not to bend the
torso forward, try and imagine how the PR2s gripper would be able to grasp an object,
try and stand in front of an area in a way that would seem like a position that would be
plausible for the PR2 given a specific offset. All these things come with experience and
observing either the real PR2, or collecting the data and running a lot of simulation on it
in order to learn how to generate good and usable data. A lot of these things are now
no longer concerns since one can directly already see if the PR2 would be able to stand
in a specific location, if the arm can reach the object, if it fits into the gripper in order
to grasp an object from the front, if the arm or the base would collide with something
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while performing a certain motion. Of course, there is room for improvement and a lot
of feedback can be provided to the human user via vibration of the controllers or more
visual ques, but this is another step into generating better data to teach robots with.
This solution also gives the human user a better understanding of the PR2s movement
capabilities. One could say, the human user learns about the robot by becoming the robot.

Grasping objects as the PR2 is a lot more different then what it was expected to be
like when collecting the data previously within the RobCoG setup. With RobCoG more
top grasps were performed, because it seemed to be the easier way to grasp something
for the robot. While inside the PR2s body, getting a good arm configuration to perform
a top grasp was not as easy as it once seemed, so that in the resulting data many front
grasps were performed, or things were grasped from the top but with an angle, instead
of the straight down approach. This might be due to the arm tending to get stuck in a
configuration while performing that grasp, or because it feels like an unusual movement
to perform as a human. In RobCoG, since one had no visual representation of the robot,
it might have appeared to be the only good way to grasp an object. Now, that one could
directly see another solution working at least virtually, as a human one might intuitively
resort to a more comfortable movement for grasping.

Overall, this solution could serve in generating more reliable data for the robot in order
to perform pick and place tasks and further help in understanding, as a human, how a
robot interacts with the environment since one can experience it, in a way, first hand.

5.3 PR2 KDL IK Evaluation
In order to be able to move the arms of the robots body as realistically as possible,

an inverse kinematics solver node was implemented, which uses the KDL library with
the Newton-Raphson solver, which is also used for the real PR2 robot. This node
takes joint limits into account and is used to calculate the joint angles between the
gripper_palm_link and the shoulder_pan_link of each arm. The limits have to be set
by hand in radians, and in order to help avoid getting the arms stuck in the outstretched
forward position, default values can be passed to the node in order to generate an initial
pose. To further make the piloting of these arms a bit easier, and in order to avoid
having the upper arm hit the table while performing a front grasp, the limits set for
some links were stronger limited than the PR2 description and URDF file would specify.
This mostly affected the shoulder_lift_links. Both continuous joints of the arms were
fixed or strongly limited, since it was observed that KDL struggles very hard to find
feasible configurations with continuous joints. These changes were more of quality of life
improvements and can easily be adapted to the original PR2s limits without having to
touch the nodes code. As already discussed previously in this chapter, the feature of
detaching the grippers is also partially implemented within the KDL node, since if it cannot
find a solution within the set amount of iterations, it will detach the gripper_palm_link
from the rest of the arm. Currently this is hard-coded within the nodes code and would
need to be adjusted for the future. Overall the PR2 IK node works well. It takes a bit of
practice to get used to the robots arm positions, but it is very important for future work,
that now while collecting data for the robot, the human user gets direct visual feedback
of what would be reachable for the robot and what not. The user can also be sure that if
e.g. the grasping action was performed without getting the gripper detached from the
arm, the real robot will be able to replicate that movement.
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5.4 PR2-body-based VR data evaluation
A goal of this thesis was to collect data from the Virtual Reality while performing pick

and place tasks within the PR2s virtual body. A dataset was created for this purpose,
containing 15 episodes, of which each contains a full set of bringing the bowl, cup and
spoon from the kitchen sink area to the kitchen island and back once with the right and
then with the left hand, keeping the IK chain intact as much as possible while performing
the task with the corresponding hand. This data has been imported to an old KnowRob
and MongoDB version, using scripts47. Unfortunately, not many evaluation runs could
be performed, since for an unknown reason, the chain of CRAM->KnowRob->CRAM-
>BulletWorld kept on crashing, approximately every 5 minutes. Restarting it every time
was just taking too much time, so that I had to abort this evaluation.
From the 23 performed runs within the bullet world simulator, unfortunately only one
was completely successful, meaning that all three objects were successfully picked and
placed. 12 runs reported only one transporting failure, 8 reported 2 failures and 3 runs
failed entirely. There were no search fails, meaning that the robot could find a pose to
perceive the object from every time. There occurred 24 fetch and 13 delivery fails. This
kind of evaluation is based on this paper[11], since it is using the same tools.
There are a few theories to what could have caused this. Either something with the
recorded data is not quite right, which is probably very likely since the logging solution
is very improvised. Maybe an offset between the Virtual Reality and the CRAM Bullet
World changed, since the real world environment in which the data got recorded, also
changed and was very limited. An update could have broken something on accident or
maybe something else entirely caused this error.
In order to solve this the dataset could be analyzed in more detail, or recreated within
the same physical environment, as the previous one, just to avoid this being a real-world-
to-vr-scaling issue. However, this should be investigated, so that this new approach of
having the PR2 body within VR can be evaluated properly.

47scripts to import data to MongoDB and KnowRob automatically: https://github.com/hawkina/vr_
neems_to_knowrob
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6 Conclusion
6.1 Summary

In this thesis a skeletal mesh model of the PR2 robot was largely auto generated via a
few scripts for Blender and imported into the Unreal Engine and the RobCoG Virtual
Reality environment. In order to be able to replicate the robots movement as close to the
real robot as possible, an inverse kinematics node was implemented for the Unreal Engine’s
animation graph. It uses the Newton-Raphson IK solver provided by the orocos-KDL
library, to compute joint angles for the arms of the robot, taking min and max limits
on a per axis basis into account. This solution can guarantee to the human user that if
the robot was able to perform a certain motion in the Virtual Reality environment, the
real robot could perform this motion too, since now both robots use the same inverse
kinematics solver. The opening and closing of the grippers was implemented essentially
based on the trigger of the motion controller and the movement of one of the finger bones.
Grasping of objects was implemented via ray-tracing between the fingers of the PR2
gripper. There were a few other features implemented, in order to map the robots body to
the human and provide as an immersive experience as possible. For example, the robots
head moves the same way the head mounted display of the VR user does. The height
of the robot is being adjusted to the height of the human. A large mirror is provided
so that the human user can get accustomed to piloting the robot. A way of logging the
performance of manipulation activities within the Virtual Reality using an old version
of the USemLog and UMCInteraction plugins was set up. A dataset of 15 episodes was
created and attempted to be evaluated.

6.2 Discussion
This thesis proves to have been a great journey. In the beginning, it was not expected

that an own IK node would be implemented as a result of this. The idea was originally to
use one of the IK nodes Unreal Engine already provides and the IK setup was expected
to be much easier and straight forward than what it turned out to be. However, this node
could prove to be useful for other researches as well and could be made into a publicly
available plugin.
Same goes for the adaptation done within the phobos plugin for Blender. It could become
a sister-project of phobos. Overall, while some features got implemented, there seems to
be always room for more. The way the PR2 gripper interacts with the objects it grasps at
the moment could be improved with physics, so that the robot does not grasp through
them. Where problems were not expected at all, problems occurred. One such case was
the export of the generated skeletal mesh from Blender to Unreal Engine. It has proven
to be very fragile and required many attempts in order to figure out the correct settings
for the export and import, as well as how an object has to look like within Blender to
be exportable within Unreal Engine. It was surprising how many differences the two
programs had with one another. How different skeletal meshes could be handled and that
there are several ways of defining bones was also rather surprising.
Overall being inside the PR2s body and performing pick and place tasks as a robot seems
in a way to be more intuitive than the previous approach since now instead of wondering
if one is standing far enough away from the furniture and if the current position would
generate a viable navigation pose, one can directly see it. It is also directly visible if
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the robot would be able to reach a certain pose or not with the arm, since if the goal is
impossible KDL will not be able to find a solution for it.

6.3 Future Work
There are many ways in which this work can be continued. For one the entire process

of generating the skeletal mesh of the robot based on an URDF file could be finessed, in
the sense that the file might not need to be filtered by hand to be able to be imported
into blender to begin with. This could become a stand alone plugin for Blender and
be decoupled from Phobos or to become a stand-alone extension or sister project of
Phobos, called Deimos. The KDL-IK Node for the animation graph within Unreal Engine,
which was developed for this thesis, could also become a publicly available plugin, which
hopefully would help other users and researchers. Even when Unreal Engine is planning to
introduce their own full-body IK system48 KDL might still be useful to other researchers
who would like to be able to use the Newton-Raphson iterations algorithm for their own
research.

Overall using a robots model within VR could help new students who are starting
to study robotics to understand the robots movement better and maybe even help the
general public to gain interest in robots and reduce their fear of robots. The task of
performing every day activities as a robot within Virtual Reality could even become a
game, to help and collect more data for research.

Another plugin for the Unreal Engine could be developed, which reads in a URDF file
and configures the IK automatically, based on the limits provided in the URDF. If the
robot will be equipped with a full physics asset, the plugin could automatically configure
the constraints within the physics asset and generate the respective bodies. If a full body
physics asset would be beneficial for the robots performance in VR should be discussed,
but maybe physics could be generated and applied to the base and the grippers of the
robot, so that collisions can be detected and the human user could obtain feedback based
on these collisions.

The entire approach could be tested with other robots, to see how it would be to pilot
less human-like robots, e.g. robots with only one arm, or which are a lot larger or smaller
than humans are, and which solutions might these robots need in order to be mapped to
the human body, if at all.

The data collection methods can be also improved upon. The currently implemented
solution uses very old plugin versions, which by now have newer versions available, with
new features and a different way to set them up. Both USemLog49 and KnowRob50 have
been hugely reworked and updated in the last few months. They should also be updated
within this project.

Overall the evaluation of the here presented model should be evaluated in as much
detail as its predecessor, which is described in the paper was, so that both approaches
could be directly compared.

48Announcement of the introduction of full body IK with limits for a new upcoming Unreal Engine
version: https://docs.unrealengine.com/en-US/WhatsNew/Builds/ReleaseNotes/4_26/index.
html (last access: 05.12.2020)

49USemLog GitHub repository https://github.com/robcog-iai/USemLog (last access: 05.12.2020)
50KnowRob homepage: http://www.knowrob.org/ (last access: 05.12.2020)
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A navigation capability based on button-presses could be developed also. It would be
important to develop it in such a way that reduces or avoids motion sickness, which is a
general VR problem. This would the user to navigate a larger Virtual Reality environment
and be less limited by the available real-world space for VR.
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