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Abstract— We propose automated probabilistic models of ev-
eryday activities (AM-EvA) as a novel technical means for
the perception, interpretation, and analysis of everyday ma-
nipulation tasks and activities of daily life. AM-EvAs are
based on action-related concepts in everyday activities such
as action-related places (the place where cups are taken from
the cupboard), capabilities (the objects that can be picked
up single-handedly), etc. These concepts are probabilistically
derived from a set of previous activities that are fully and au-
tomatically observed by computer vision and additional sensor
systems. AM-EvA models enable robots and technical systems
to analyze activities in the complete situation and activity
context. They render the classification and the assessment of
actions and situations objective and can justify the probabilistic
interpretation with respect to the activities the concepts have
been learned from. In this paper, we describe the current
state of implementation of the system that realizes this idea
of automated models of everyday activities and show example
results from the observation and analysis of table setting
episodes.

I. INTRODUCTION

Enabling ambient environments and autonomous robots
to competently interpret and analyze everyday activities
requires the systematic and comprehensive observation of
the activities and the abstraction of the observed behavior
into informative models (Fig. 1). Such models are to enable
robots to infer the intentions of people, the abnormality of the
behavior, the next actions, where people go, why an action
failed, the most likely trajectory of a reaching motion, etc.

Fig. 1. Abstraction from raw sensor data to description of a daily schedule.

We propose the use of probabilistic models of everyday
activities in order to gracefully deal with the uncertainty and
variation inherent in human activities. However, the effective
realization of these probabilistic models poses several hard
research challenges:
(1) Expressiveness: Probabilistic models of everyday ma-
nipulation must represent continuous motion as well as
discrete events. They also need to be relational in order to
represent behavior that is determined by the circumstances
and interactions with individual objects. Learning such ex-
pressive models and performing inference effectively as well
as efficiently is well beyond the current state of the art.

(2) Groundedness in sensor observations: Concepts repre-
senting aspects of everyday activity should be specified with
respect to the roles they play in people’s activities. For ex-
ample, the system could learn the places in the environment
where people stand when taking objects out of the cupboard.
(3) Automation through observation systems and action inter-
preters: Activity models should be automatically constructed
from highly reliable and accurate observation systems for
long activity episodes. In addition, high-dimensional time
series data (e.g. 51 DOF human pose sequences) has to be
abstracted into compact and informative representations.

In the AM-EvA project, we investigate a new generation
of activity models that

• are based on full human body motion and object inter-
actions as their primitive building blocks;

• represent the interaction between navigation and ma-
nipulation actions, the objects they are operating on, the
situation context and the location, and thereby allow for
more comprehensive assessment of the activities;

• use concepts such as the place where actions are
performed, the objects that can be picked up single-
handedly, etc. These concepts are defined transparently
and therefore constitute objective criteria for classifica-
tion and assessment;

• can be acquired automatically by a camera- and sensor-
network-based observation system.

The main objectives of the AM-EvA project are the
investigation of novel computational mechanisms that enable
computer systems to recognize intentional activities, the
development of an integrated software system to automate
activity analysis, and the demonstration of the impact of
automated activity analysis on service robotics and ambient
assistive living environments.

II. OVERVIEW

The software architecture of the AM-EvA system is de-
picted in Fig. 2. Observation data is provided by a distributed
camera and sensor network that includes a highly accurate
markerless full-body motion tracker and perceives interac-
tions with objects, such as pick up and put down, based on
RFID sensors. The system interprets the time series data by
segmenting it into semantically meaningful motion segments.
These include continuous data such as reaching trajectories,
and discrete events such as making contact with an object.

Actions are represented in a first-order logical language
based on time intervals where relations on continuous data
are processed lazily. This means predicates operating on
continuous motion data such as the velocity profile of a



Fig. 2. Software architecture of the AM-EvA system.

reaching motion are computed on demand and then translated
into their symbolic representation.

Sequences of motion segments are combined into inten-
tional actions, such as picking up an object or opening a door.
The activity model is then a joint probability distribution
over this first-order action representation language, which
we represent as Markov logic and Bayesian logic networks.
It can be queried by users and other system components.

We model activities of daily life at different levels of
abstraction: A routine level that includes a complete daily
schedule, an activity level, which models complete activi-
ties (e.g. setting a table, preparing a meal), and an action
level that models actions (e.g. picking up an object) as a
probabilistic hybrid discrete/continuous event (Fig. 1). Lower
levels in the pyramid are a sequence of motion segments,
continuous motion models and the raw output of the human
pose tracking system. This strategy allows to detect many
different kinds of abnormal behavior without modeling each
and every action in excessive detail.

The (semi-)automatically acquired model enables the sys-
tem to automatically infer answers to a large variety of
queries concerning the performance of everyday activities
including the following ones: Did the human go for his daily
walk? Did he take his medicine at the correct time? Is he
still able to cook meals or is he forgetting things? Does the
human have problems reaching into the overhead cupboards?

III. OBSERVING EVERYDAY MANIPULATION ACTIVITIES

We believe that observing human activities requires the
estimation of human motions and associated full-body poses.
However, commercial marker-based tracking systems are
infeasible in real scenarios, as they are intrusive, expen-
sive and difficult to set up. We developed a markerless
motion capture system suitable for everyday environments
(Fig. 3) that comes with the following improvements over
compareable state-of-the-art systems: (1) Setup is easy, cheap
and unintrusive, requiring only the placement of 3 or more
cameras; (2) Estimation of 51 DOF poses (joint angles) and

corresponding body part trajectories with high accuracy; (3)
Unconstrained tracking without prior training; (4) Implicit
modeling of objects and the environment.

Fig. 3. Markerless motion capture (one of four cameras): a) inner model
b) outer model c) virtual 3D view with appearance model. This and other
videos are available at http://memoman.cs.tum.edu.

Our system estimates (previously unobserved) human
poses in a recursive Bayesian framework using a variant
of particle filtering. To make the problem computationally
tractable, we developed a sampling strategy [2] that is a
combination of search space partitioning [3] with a multi-
layered search strategy [4]. By integrating the sampling strat-
egy with a silhouette-based multi-camera tracking framework
and an anthropometric human model [1], we are able to
derive realistic human posture at low frame rates (25 Hz).
Evaluations on the HumanEvaII benchmark [5] show the
accuracy and robustness of our approach (Fig. 4).
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Fig. 4. Motion capture accuracy on HumanEvaII benchmark [5].

To be able to track subjects performing manipulation
tasks such as picking up objects from inside a cupboard
and placing them on a table (Fig. 3), dynamic parts in the
environment are filtered based on learnt human appearance,
and ignored when evaluating particle weights. Occlusions
from static environment objects (e.g. tables) are handled
by using blocking layers that prevent evaluation unless the
blocked area resembles human appearance. Good tracking
results are achieved when every occluded part is visible by
at least 2-3 other cameras.

IV. CONTINUOUS MOTION MODELS

At the most detailed level, our models base their represen-
tations directly on the joint motions that are gathered by the
markerless full-body motion tracking system (together with
information on object interactions from the sensor network
in general). Even though the data at this level is very high-
dimensional, it is reasonable to assume that it is nevertheless
well-structured, because actions performed during house-
work are in many ways constrained (with respect to the
expected limb motions, which are far from arbitrary) and
they follow clearly discernable patterns. These patterns can
be made explicit by suitably embedding the high-dimensional
data into a low-dimensional latent space.

We can directly incorporate the semantic labellings of
action sequences as an input dimension to the learning
algorithms of, for example, Gaussian process dynamical
models (GPDMs), and learn low-dimensional embeddings

http://memoman.cs.tum.edu


Fig. 5. GPDM with class constraints: low-dimensional embedding of an
unconstrained pick-and-place task; the colors correspond to semantic labels.

that seek to structure the latent space with respect to the la-
bels. We thus extended learning algorithms for GPDMs with
probabilistic constraints that ensure that points belonging to
the same classes are close together while points belonging
to different classes may be far apart, further structuring the
latent space according to its semantic interpretation (see
Fig. 5). (A somewhat similar approach, which, focusing on
specific inference tasks, considers a discriminative model,
was proposed in [7].) Given a learnt mapping from the high-
dimensional data space to the latent space, we can then
perform classification of newly observed sequence data by
maximizing the likelihood of the latent space configuration
given the labels.

Since our models are generative, we can flexibly use them
to either predict future motions that are likely to occur,
evaluate the probability of an observed motion sequence
(allowing us to detect peculiar actions/motions that are, for
example, unusual given the overall actions that are supposed
to be performed) or, as previously stated, infer the labels
of a sequence, providing the discretized information for
higher-level modeling. The labelling constitutes precisely the
semantic interpretation that we require to analyze activities
at higher levels of abstraction.

In addition to the aforementioned approaches based on
continuous models of the immediate motions, we also use
linear-chain conditional random fields (CRFs) in order to
identify motion segments and represent them as instances of
classes such as Reaching or TakingSomething. The approach
is somewhat complementary, as it does not result in motion
models, yet it facilitates the incorporation of further sensory
input such as RFID readings, allowing semantic labellings
to be more easily based on object interactions.

As input, we use a quite large set of binary features, which
could be split into two groups: The first group are pose-
related features which denote, for example, if the human
is extending or retracting the hands. The second group of
features includes information from the environment model
and the sensor network and states for instance if the human
currently carries an object or if a drawer is being opened.
These features are combined, and CRFs are learned on a
labeled training set. The CRF classifiers are integrated into
the knowledge processing system and create a sequence of
motion segments which are represented as instances of the
respective semantic classes. The system is able to classify
unknown test sequences with an accuracy of up to 89%
in spite of the significant variation in how the actions are
performed.

V. SYMBOLIC ACTION REPRESENTATION

On the next abstraction layer, the result of the segmen-
tation is represented as a sequence of motion segments
of the respective classes as depicted in the lower part of
Fig. 6. The symbolic action representation is part of a larger
knowledge representation system [8]. Motion segments are
represented as instances of motion classes like Reaching,
inheriting all their properties. The pyramid of higher-level
actions in Fig. 6 is built by matching the sequence of motion
segments to the descriptions of actions and their sub-events.
Action parameters are determined by relating the segments to
events observed simultaneously from the sensor network, like
an object being picked up or a cupboard being opened. The
observations are automatically loaded into the knowledge
processing system using computable classes and properties
which are also described in [8]. Examples of queries can
be found in Fig. 7. Though the traces are only drawn for a
single joint, the result includes the full human pose vectors
for each point in time. In the image on the left, we asked
for the whole pose sequence of a table setting activity using
the following query:

owl query (? Acty , type , ’ SetTable ’ ) ,
pos tureForAct ion (? Acty , ?Posture )

This query directly relates the activity level and the pose
vectors, but a more fine-grained selection that takes the inter-
mediate levels of abstraction and different action parameters
into account is possible as well. For instance, the query
depicted in the right image in Fig.7 asks for all postures
that are part of a TakingSomething motion, performed on a
DinnerPlate in a TableSetting context:

owl query (? Acty , type , ’ SetTable ’ ) ,
owl query (? Actn , type , ’ TakingSomething ’ ) ,
owl query (? Actn , subEvent , ?Acty ) ,
owl query (? Actn , objectActedOn , ?Obj ) ,
owl query (? Obj , type , ’ D innerPla te ’ ) ,
pos tureForAct ion (? Actn , ?Posture )

Fig. 6. Hierarchical action model constructed from observed human
tracking data.

As described in [8], the data can also be used for learning
the place from which an action is usually performed. Fig. 8
sums up the main steps: The observed positions are loaded
into the knowledge processing system (left) and clustered
with respect to their Euclidean distance (center). These
clusters are represented as “places” in the knowledge base,
and the system automatically learns a mapping from action
properties (like the object to be manipulated and its position)



to the place where the human is standing. Using this model,
it is possible to either obtain a place for an action (like the
place for picking up pieces of tableware drawn in Fig. 8
right) or to classify observations in order to find out about
the most probable action performed from this place.

Fig. 7. Human pose sequences for setting a table (left) and taking a plate
out of the cupboard (right).

Fig. 8. Observed positions of manipulation actions (left), the positions
clustered into places (center), and the result that has been learned as the
”place for picking up pieces of tableware” (right).

VI. ACTIVITY MODELS

We consider sequences of single (atomic) actions, such
as setting a table or cooking meals, as activities. Spotting
differences at this level requires a detailed modeling of
the actions involved, their parameters, a (potentially partial)
ordering between them, etc.

Hierarchical action models (Fig. 6) that combine logical
activity models with probabilistic logical reasoning provide
a detailed representation of single actions, covering the
whole range from the activity level (cooking pasta), over
single actions (switching on the stove, putting salt into the
water) to motion segments (the arm movement for taking
the pasta box out of the cupboard). Apart from just the
pure action sequences, the models provide information about
manipulated objects, hands used, places where people stand
during actions, or the purpose of the action.

To recognize activities, the system needs detailed descrip-
tions of involved actions and their parameters (e.g. temporal
extent, objects being manipulated, spatial location). Our
system autonomously expands its repertoire of actitivies by
importing information from the web. We integrated methods
for importing activity specifications from sites like ehow.com
and for transforming these natural-language task instructions
into formal logic descriptions [9]. Using this approach, we
have successfully classified test sequences as instances of
different activities using description logic reasoning.

VII. MODELS OF THE DAILY SCHEDULE

The most abstract level describes whole days as sequences
of activities, developing models of the usual daily schedule.
The models have to describe and allow the detection of
common activities like getting up, cooking, having meals,
going for a walk, reading, watching TV, or taking a bath.

Probabilistic logical representations provide both the re-
quired expressiveness and flexibility. Technically, the models

are very similar to those on the activity level, the only
major difference being that they are applied to more abstract
entities. Accordingly, peculiarities that can be detected with
such models are on the level of complete activities, for
instance that a person omitted activities that would usually
take place, such as leaving the apartment.

VIII. CONCLUSIONS

We have described the current state of AM-EvA, auto-
mated probabilistic models of everyday activities for the
perception, interpretation, and analysis of everyday manip-
ulation tasks and activities of daily life. We have outlined
the main components, which are a full-body motion tracking
system for people performing everyday manipulation tasks,
various learning approaches that infer low-dimensional ac-
tivity representations from the tracking data and segment
continuous motions into hybrid automata representations.
Other components combine these hybrid activity models with
encyclopedic knowledge about everyday manipulation tasks
and human living environments to provide prior knowledge
for making learning and inference more tractable. AM-EvA
seemlessly combines symbolic knowledge with observed be-
havior data structures through the use of computable relations
and properties that are evaluated directly on AM-EvA’s data
structures and through data mining mechanisms that learn
symbolic concepts (such as objects that can be picked up
single-handedly) from observed activity data.

In our ongoing research, we investigate various challenges
that are raised by our approach, i.e. full-body motion tracking
with integrated object interaction estimation, accurate real-
time tracking for high DOF motion using dimension reduc-
tion techniques, effective probabilistic learning and reason-
ing mechanisms for relational hybrid (discrete-continuous)
action models, and high-level representations for the inter-
leaved execution of everyday activities.
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