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Abstract The ability of reusing existing task execution plans is an important step
towards autonomous behavior. Today, the reuse of sophisticated services allowing
robots to act autonomous is usually limited to identical robot platforms and to very
similar application scenarios. The approach presented in this paper proposes a way
to mitigate this limitation by storing and reusing task plans on a global accessible
database. We describe the task execution engine for the RoboEarth project [26] to
demonstrate its ability to execute tasks in a flexible and reliable way.

1 Introduction

Robot control and execution planning is a challenging task, particularly in complex
indoor household environments. Autonomous service robots have to achieve high-
level task goals while performing in a reactive and flexible way. To allow a robust
and reliable high-level task execution, autonomous robots have to detect unexpected
situations, handle exceptions and manage their limited resources by adapting their
behavior accordingly to cope with issues of dynamics and uncertainty.

Therefore high-level capabilities, such as knowledge-processing and reasoning,
are essential for task planning and decision making processes. Pre-programming a
plan for a given robot to solve a task is usually a complex and tedious act and most
of the time, plans once written cannot be used again under different premises. Even
if a plan is programmed for one robot in a robust manner it is usually impossible
to copy this plan on another robot type and achieve the same success. To cope with
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Fig. 1 Interaction between RoboEarth components, as seen from the execution engine’s point of
view

these typical issues, RoboEarth was established. The prime objective of RoboEarth
[23] is to enable robots to reuse previously generated data; i.e. maps of the envi-
ronment, object models or task execution plans. The most important component in
the RoboEarth project thus is a distributed database [18] for storing and processing
this data. The data can be generated from participating robots, humans or processor
programs running on the database itself. For the interpretation and execution of
abstract task descriptions we developed an execution engine which is able to serialize
and trigger the execution of all commands, supervise them, cover failure states and
handle incoming events.

The focus of this work is to describe the task execution engine of the RoboEarth
project and to demonstrate its ability to execute tasks in a flexible and reliable way.

The remainder of the paper is organized as follows: first, a brief overview of the
related work in the domain of plan-based robot control and decision-making is given
in section 2. The current architecture for the RoboEarth demonstrator implementation
is presented briefly in section 3. In the following section 4.1 the notion of action
recipes is described in detail. The process for selecting an action recipe is detailed in
section 5. Afterwards we describe the chosen language for implementing execution
plans along with the necessary modifications in Section 6. Section 7 presents some ex-
perimental results. A discussion in Section 8 analyzes and sums up the contributions
of this paper.
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2 Related Work

Within the last few years several applications of autonomous service robots and
demonstrations of plan-based control have been developed and successfully evaluated
in real world environments. With respect to the implementation of a reliable plan-
based high-level controller on autonomous mobile robots the work of [19, 2, 15]
should be mentioned. All mentioned approaches so far have in common that the
robot system will not be given the detailed sequence of commands to execute, but
a list of goals which have to be achieved instead. During the run, the robot will
generate a plan to accomplish these goals, handle unexpected situations, manage
failures and thus execute the plan in a robust manner. The approach developed in
[1] has the objective to control and manage a group of autonomous mobile robots
for transshipment tasks in a decentralized and cooperative way. Further AI-based
cooperative systems were proposed by [7, 6, 5].

In the plan-language and -execution domain several sophisticated systems have
been developed. One of the first situation-driven interpretations of plans was proposed
in RAP [9] to enable reactive planning and execution of sketchy plans. A descendant
of RAP is the language Reactive Plan Language (RPL) which was designed by
[14] to incorporate a richer set of control constructs and to allow the creation of
reactive plans for robotic agents. Further plan execution systems used by autonomous
robots are the Reactive Model-based Programming Language (RMPL)[24] and the
Executive Support Language (ESL) [10].

The execution system of the RoboEarth project builds upon the CRAM planning
language [3], a sophisticated plan language that shares several concepts with RPL,
but its focus lies on the plan execution on real physical robots, e.g. providing fast
feedback-loops. In [4], the authors demonstrate the system by using a robot which
downloads and parses a set of natural language instructions from a web page and
translates these into a sketchy CRAM plan.

In contrast to the works mentioned above, this paper focuses on describing an
approach to sharing task execution plans among different robot types. The instructions
to be downloaded (called action recipes) along with object models, maps and other
requirements are stored in a well-defined, computer-readable way.

3 System Overview

The overall architecture is shown in Figure 1. All data for RoboEarth is stored by
a cloud computing database based on Apache Hadoop1. The implementation is
described in [18]. The data stored in the database includes action recipes, object
detection models, navigation maps, etc. Every file of this data is annotated with an
OWL description to allow semantic and taxonomic queries. The execution engine
takes textual commands and a description of the robot and environment from the

1 http://hadoop.apache.org
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user and poses requests for information like plans and object positions to the knowl-
edge processing framework KnowRob. KnowRob is responsible for the knowledge
processing (section 4). It can access both the world model (for answering object posi-
tions queries) and the global database. To generate a plan, it queries the database and
retrieves a matching, symbolic task plan to the execution engine. During execution,
the execution engine resolves symbolic plan annotations (designators) by querying
the KnowRob component. Process modules are basically an interface for basic action
primitives, in the given example implemented as ROS actionlib services.

Assume a scenario where a robot is commanded to find a mug in order to provide
a human with a drink. In this case it is possible to query the RoboEarth database for
all object models that represent an object of type mug and its specializations (e.g.
coffee mug). Should this inquiry fail or not give the desired results, it is also possible
to query for all models representing an object that can store liquids.

4 Representations for Exchanging Knowledge

The knowledge processing framework KnowRob [20] is used as interlingua to ex-
change knowledge between different components of the RoboEarth system. When
the execution engine queries for a recipe, KnowRob searches the RoboEarth database,
downloads recipes, checks for missing components (such as environment maps or
object models that are required for the task), and triggers their download. During
runtime, KnowRob serves as a semantic interface to the object positions provided by
the world model.

In the current implementation, the KnowRob knowledge base is running locally
on each robot. This comes at the cost of increased processing power and memory
requirements on the robot, but has the advantage of the RoboEarth framework still
providing basic functionality without having access to the Internet.

4.1 Action Recipes

Action recipes describe in a hardware-agnostic way how tasks are to be executed by
a robot and are thus a kind of generalized task specification. Recipes are stored in
description logic in a language built upon the W3C-standardized Web Ontology Lan-
guage [22] and the KnowRob knowledge base [20]. The language itself is described
in [21]. An excerpt from an exemplary action recipe is given in Figure 2.

This OWL-based language is optimized for automated reasoning about the re-
quirements that need to be fulfilled in order to execute the action on a given robot
platform, and for the description of actions, objects, environment models and robot
capabilities in a single, coherent format. The following two sections will introduce
some of the key concepts of this language. Before execution, the recipes are translated
into the CRAM Plan Language CPL, which supports better execution monitoring,
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Class: MoveBaseToHandoverPose
EquivalentTo:

(knowrob:toLocation some
robotPose-handover1)

SubClassOf:
roboearth:Translation-LocationChange

...

Individual: ServeADrinkOrder10
Types:

knowrob:PartialOrdering-Strict
Facts:

knowrob:occursBeforeInOrdering
MoveBaseToGraspPose,

knowrob:occursAfterInOrdering
GraspBottle

Fig. 2 Action Recipe example: Subaction and partial ordering specification (Manchester Syntax,
[11])

failure handling, and grounding of abstract object descriptions. This language will be
described in Section 6.

Figure 2 gives examples of action specifications in RoboEarth action recipes,
describing the action to move to a position for handing an object to a patient
(MoveBaseToHandoverPose) as a specialization of an intentional location change
(Translation-LocationChange). Task specifications are divided in sub-tasks that are
partially ordered, thus allowing descriptions of both sequential and parallel task
execution order.

4.2 Objects and Locations

In order to fully specify a task, it is not only necessary to describe the actions to
execute, but also the objects and locations that the actions will interact with.

Pictured in Figure 3 is the corresponding description for some of the objects
and locations used in the previously given example plan. DrinkingBottle, Bed-
PieceOfFurniture and Point2D are the names for OWL classes defined in the
RoboEarth ontology.

5 Reasoning about Robot Capabilities

To show the essential need of capability matching, we start with a typical scenario.
Assume the RoboEarth database stores task descriptions for very different robot
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Individual: Bottle1
Types: knowrob:DrinkingBottle

Individual: Bed1
Types: knowrob:Bed-PieceOfFurniture

Individual: handPose-handover1
Types: knowrob:Point3D
Facts: knowrob:aboveOf Bed1

Fig. 3 Description of two objects and one location for the example use case

platforms. Assume further that some of the stored recipes were originally intended
for e.g. Willow Garage’s PR2 service robot and others were provided for a Roomba
vacuum cleaner robot (i.e. a robot without an arm and gripper). Obviously, in this
case there are recipes in the database that the Roomba robot cannot use, no matter
how generic and platform agnostic these are formulated.

Thus two key features are required:

1. a way for describing the capabilities of different robot hardware
2. a method for selecting recipes from the database which are usable for a robot

platform

These two points will be addressed in the following subsections.

5.1 Specifying Capability Requirements of an Actions

The Unified Robot Description Format (URDF) [25] has been adopted by the Robot
Operating System [16] for describing a robot platform by its joints and links. This
format is used within the ROS framework for visualizing robots and for configuring
motion planners.

To decide whether a given recipe can be executed by a given robot, enumerating
the joints and links is not enough [13]. Additionally, a semantic description of sensors
and actuators is required, which can be checked with requirement descriptions in the
action recipes.

Recently, a robot capability language incorporating sensor and actuator semantics
(called SRDL) has been proposed by [13]. The OWL classes it uses for designating
sensors and actuators are extensions of the KnowRob ontology, and are thus easily
integrable into the RoboEarth system. We chose the successor of the language, called
SRDL2, for integration into RoboEarth [21].
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5.2 Selecting Action Recipes

To decide whether a given robot is capable of executing a recipe, it is necessary to
annotate said recipe with capability requirements. Thanks to formulating recipes in
terms of classes in an OWL ontology, there are multiple ways to do that. For instance,
in the KnowRob ontology there is an OWL class called Reaching, whose parent is
VoluntaryBodyMovement and which has the children (among others) ReachForObject-
Pose and HandoverObject. Both children inherit the dependency on a ReachingAbility
from their parent class, specified as OWL restriction hasCapabilityDependency some
ReachingCapability for the class Reaching.

With this adaption, for every recipe containing a sub-action that is a descendant
of Reaching (for example HandoverObject), we can infer by OWL reasoning that a
robot needs to provide the ReachingCapability capability to execute the recipe.

6 CRAM Plan Language

The CRAM planning language (CPL) [3] is used as the base language for executing
RoboEarth. CPL extends on concepts from McDermott’s ”Reactive Plan Language”
[14]. It provides amongst other things several control structures for executing and
synchronizing tasks in parallel and failure handling. As it is based on Common Lisp,
the expressiveness of a proven, Turing-complete programming language is available
for implementing plans. Together with ROSLisp, the Lisp client library for the Robot
Operating System, a whole range of tested robotics implementations are readily
available for use in an execution plan. An exemplary plan describing the task of
fetching a bottle to a person in a hospital bed is shown in Figure 4.

Objects, locations and actions are described by designators. Designators are basi-
cally symbolic descriptions that are resolved at the latest possible instant during task
execution. For example, robot-pose-handover1 in Figure 4 is a location designator
that gets resolved to an actual robot base position such that the robot can reach to
hand-pose-handover1, while the latter designator gets resolved to a position above
the bed.

Actions to be executed in CPL are specified by describing corresponding goals.
These goals in turn can be specified by a set of other goals or by calling a process
module. Process modules implement hardware-specific behavior, for example for
navigating to a given pose or for controlling the manipulators. They can thus be seen
as a classic hardware abstraction layer, abstracting manipulators as well as sensors.

6.1 Designator Resolution

There are three different designator types in the current implementation:
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(def-top-level-plan serve-a-drink ()
(with-designators

((bed1 (object ‘((name bed1)
(type bed_piece-of-furniture))))

(location-bed1 (location
‘((of ,bed1))))

(hand-pose-handover1 (location
‘((on ,location-bed1))))

(bottle1 (object ‘((name bottle1)
(type drinking-bottle))))

(robot-pose-handover1 (location
‘((to reach)

(loc ,hand-pose-handover1)))))
(achieve ‘(object-in-hand ,bottle1 :right))
(achieve ‘(loc Robot ,robot-pose-handover1))
(achieve ‘(object-handed-over ,bottle1

,hand-pose-handover1))))

Fig. 4 CRAM example plan for serving a drink to a patient.

1. Object designators describe objects that the robot has to interact with. In the
example plan in Figure 4 both the bed and the bottle are designators of this kind.
These kinds of designators are resolved to objects defined in the semantic map of
the environment by evaluating the given description.
The bed object in the given example is resolved by the object type; i.e. all objects
of the type bed piece-of-furniture found in the semantic map of the environment
are candidates for resolution. It is worthwhile to mention that specializations
of object types are also considered: E.g. assume that the above plan is to be
run in a hospital room with a semantic map containing an object described as
hospital bed piece-of-furniture. Presuming this object type is defined as a subclass
of bed piece-of-furniture, the bed object designator gets still bound to the hospital
bed object.

2. Location designators can be bound to objects to reference the pose of objects, as
is the case with in the example in Figure 4. They can also describe poses relative
to other locations and thus provide a basic form of geometric reasoning, as is the
case with hand-pose-handover1.

3. Action designators provide symbolic annotations to a movement or perception
action. They get resolved by the platform-dependent process modules responsible
for the corresponding manipulator. In order to keep action designator descriptions
consistent across different hardware platforms, we plan to extend the RoboEarth
ontology as a basis for action designators.
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6.2 Translating Action Recipes into CRAM Plans

The language for formulating action recipes described in [21] is designed to be a
language for specifying and sharing hardware-independent concepts and enabling
automated reasoning on these concepts, i.e. it is a language to describe the semantics
of a task. Therefore, before execution it is necessary to translate these descriptions
into a plan description language, containing calls to manipulator commands, sensor
interpretation commands, etc. Older prototypical implementations of an execution
engine for the RoboEarth project are translating recipes into a finite state machine2.

As the sub-tasks in an action recipe are partially ordered, an action recipe can
be represented as a directed, acyclic graph. To create a plan from this graph, our
implementation first applies a topological sorting (using an implementation of the
algorithm proposed by [12]). Our implementation thus currently does not account
for parallel execution of sub-tasks.

Having found a valid topological ordering, we then proceed to generate a list
of designators from the task descriptions in the recipe. The creation of designators
for objects and locations in the recipe is straight forward: Object designators are
created from the object type and name as specified in the recipe; e.g. the object
Bed1 from Figure 3 is translated to the designator bed1 (object ‘((name bed1) (type
bed piece-of-furniture))). Similarly, location descriptions like handPose-handover1
are translated to location designators as hand-pose-handover1 (location ‘((above-of
,location-bed1)))

For translating tasks to goals, we have defined a set of mappings. E.g. the Move-
BaseToHandoverPose from Figure 2 is mapped to the goal (loc Robot pose), whereas
pose is the location designator for the target pose. In the future, we plan to integrate
these mappings into the action recipe language, to increase the applicability of the
approach.

7 Experiments

The work described in this paper was used for the demonstrator for the third
RoboEarth workshop at TU Munich in February 2012 on a PR2 and the TUE’s
AMIGO robot platform [8]. Both robots had the same task similar to the examples
given above, i.e. to fetch a bottle from inside a cabinet to a hospital bed, but were
situated in different rooms in different locations. Two recipes were used, one describ-
ing the task of grasping an object and one describing fetching an object to a hospital
bed whereas the former was used by the latter. There were several resources that had
to be downloaded prior to task execution; i.e. maps describing the environments and
object detection models. Additionally, the robots were downloading an articulation
model [17] to open the cabinet door or creating one, if none was available.

2 A video of a public demonstration where one implementation of this kind was used is available at
http://youtu.be/r5ZRxbo0pSQ
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Both robots were able to successfully retrieve the required resources from the
database, thus synthesize the plan and complete the task. We noticed that due to the
static nature of the OWL to CRAM translation, we had to take care that the process
modules for both platforms are equivalent in their effects.

8 Conclusions and Future Work

In this work, a plan-based execution engine for the RoboEarth-Project has been
presented. The primary focus of this work was the tight integration of the concept
in the whole RoboEarth framework. The key aspect of RoboEarth is the use of
action recipes, which act as symbolic, high-level task descriptions and which are
described in a description language in a platform independent way to allow a platform
independent sharing and reasoning.

In the current implementation, the plans describing how to achieve sub-goals (e.g.
(achieve ‘(object-in-hand ...)) in Figure 4) for picking up objects) are implemented on
the robot itself. A more generic approach would be to have these sub-plans generated
automatically from action recipes available in the database, as we do it with the top
level plan (described in section 6.2).

Another aspect that we will investigate further is how to move the knowledge
processing onto the database servers. This would enable robots with less computing
power to retrieve and execute action recipes, if a reliable Internet connection is given.
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