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Knowledge processing methods are an important resource for robots that perform challenging tasks in complex, dynamic
environments. When applied to robot control, such methods allow to write more general and flexible control programs and
enable reasoning about the robot’s observations, the actions involved in a task, action parameters and the reasons why an
action was performed. However, the application of knowledge representation and reasoning techniques to autonomous robots
creates several hard research challenges. In this article, we discuss some of these challenges and our approaches to solving
them.

1 Introduction

Arguably, AI-based robotics started with the Shakey project at
SRI as early as 1966 and the realization of an autonomous robot
with human problem-solving skills was by many considered to be
the holy grail of Artificial Intelligence [20]. The research on AI
methods for autonomous robot control was framed within the
so-called sense-plan-act architecture in which a sensing module
was to map a sensed scene into a symbolic (first-order logic)
representation of the scene, the “plan” module took the scene
description, inferred a goal and generated a plan for achieving
the respective goal, and the act module took the symbolic plan
and translated it into control signals for the robot.

The research on Shakey immediately spawned seminal re-
search work investigating the key components of the plan module
that was considered to be the system component responsible for
achieving “intelligent” problem-solving behavior. All of us have
read the papers “Application of Intelligent Automata to Recon-
naissance” [5], “STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving” [9], “Learning and
Executing Generalized Robot Plans” [10], “Application of The-
orem Proving to Problem Solving” [12], and many others, which
started up and dominated the research directions in AI planning
and reasoning for decades. Only 15 years later the Shakey re-
searchers became aware that the embedding of the AI methods
into the perception and action mechanisms of the robot might
be equally important for the research communities [19]. As a
result, the Shakey researchers published edited versions of the
original project proposals and progress reports as technical re-
ports to make them accessible.

These events within the Shakey project were later paralleled
by the development of the whole field of AI-based robotics. For
a number of years Artificial Intelligence focussed on the inves-
tigation of suitable learning, reasoning, and planning methods
that took complete symbolic representations for granted and
produced symbolic representations of action specifications. This
research direction, which failed to produce competently act-
ing robots, was radically challenged by Brooks who proposed
to achieve intelligent agency through control methods that do
not rely on sophisticated representations and reasoning [4, 3].
More recently, the research field of developmental robotics has
stressed that competent agency requires tightly integrated data

structures and computational processes, which are best realized
through the co-development of data structures and processes.

Our own research approach is to take state-of-the-art and
leading-edge knowledge processing methods, i.e. methods for
knowledge acquisition, representation, reasoning and learning,
and make them work for autonomous robots by grounding the AI
methods into the robot’s perception and action mechanisms and
the data structures of the robot and by developing “satisficing”
methods [22] that work under reasonable assumptions about the
robot’s knowledge, the environment, and the tasks [1, 2, 23].

With autonomous robots becoming skilled enough to per-
form rather complex everyday manipulation tasks, knowledge
processing is becoming more and more important, since those
tasks require much knowledge of different kinds to be performed
competently: The robot needs to infer the required actions from
heavily underspecified commands. It needs to know which ob-
jects are involved, where to stand to pick them up, which grasp
type and grasp force to use, and how to approach the objects.
Moreover, different object states (like a cup being clean or dirty,
empty or filled with coffee) influence how they are to be handled.
Supplying the knowledge and reasoning mechanisms to infer the
correct decision creates several research challenges:

• How to ground symbolic representations into sensor data
and actions to be performed? How to continually update
the knowledge to keep it consistent with the state of the
world?

• How to represent uncertain knowledge, and how to per-
form sound inference on it?

• How to acquire all the knowledge that is necessary to
competently perform everyday tasks?

• How to perform adapt to changing conditions and learn
new tasks?

• How to find suitable representations that are expressive
enough, but still allows for fast reasoning?

• How to attain action-awareness, and how to predict the
effects of actions?

• How to interact with humans, communicate with them
and interpret their actions?

In the following sections, we will discuss these challenges which
we encountered while developing knowledge processing systems
for autonomous household robots. We will introduce the prob-
lems and outline how we addressed them in our work.
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2 The KnowRob System

A knowledge processing system serves as a common semantic
framework for integrating information from different sources.
Our system is built around the KnowRob framework that was
introduced in [23] and has since been extended. KnowRob is
implemented in Prolog and uses OWL, the Web Ontology Lan-
guage, for representing knowledge. Figure 1 gives an overview of
the system structure. OWL is a compromise between expressive-
ness and reasoning capabilities. Translating sensor data into this
format is rather simple, the conversion of knowledge from more
expressive sources requires specialized translation procedures.
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Figure 1: Overview of the KnowRob system. The knowledge base
is tightly integrated with the robot’s perception and planning
modules and provides query and visualization interface, meth-
ods for loading external information, and several inference tech-
niques.

KnowRob provides an extensible knowledge-based frame-
work that allows to integrate different kinds of knowledge (static
encyclopedic knowledge, common-sense knowledge, task de-
scriptions, environment models, object information, observed ac-
tions, etc.) from different sources (manually axiomatized, de-
rived from observations, or imported from the web). It supports
different reasoning mechanisms (deterministic and probabilistic
reasoning), clustering, classification and segmentation methods,
and provides query interfaces as well as visualization tools.

As a knowledge processing system designed for robots,
KnowRob is working on-line during the robot’s operation, but
it can base its decisions on all information it has acquired so
far. For instance, it can learn models of human actions from
motion-capture data that has been computed off-line and use
the inferred results during on-line operation.

3 Research Challenges

3.1 Symbol Grounding

When performing abstract symbolic reasoning about phenomena
from the outside world, the robot needs to make sure the symbols
are grounded [14]. That is, any symbol in the knowledge base
needs to be related to the corresponding data structures in the
robot’s perception and control systems.

On the one hand, this means that the robot needs mecha-
nisms to generate symbols out of its perception of the world, and

to update its belief when the observations change. For example,
the robot must be able to recognize objects and represent them
internally as an instance of the respective object type. On the
other hand, it also needs to link symbolic action descriptions
to executable procedures with the same semantics as the action
symbol.

A still open challenge is how to ensure consistency: Much
of the information in the robot’s knowledge base is generated
from uncertain sensor data, and eliminating contradictions in this
data using only deterministic representations is difficult. In the
following sections, we present some methods to approach this
problem: To compute data on demand, to store information only
once, and to use probabilistic reasoning methods where conflicts
are likely.

Our approach: Computables – Regard the World as a Virtual
Knowledge Base We extend the classical first-order knowl-
edge representation with computable predicates. Instead of be-
ing evaluated based on the axiomatized knowledge in the robot’s
knowledge base, they are computed by calling external methods.
This allows to generate symbolic concepts out of observations or
robot-internal data structures on demand during the reasoning
process. In general, this method extends the robot’s reasoning
capabilities from manually stated symbolic knowledge to real
world phenomena.

well_localized(Robot) :-
   localization(Robot,Lztn)
   loc_estimates(Lztn,Distr),
   peaks(Distr, Peaks),   
   length(Peaks, 1).

location(Robot,Loc) :-
   localization(Robot,Lztn)
   loc_estimates(Lztn,Dist),
   peaks(Dist, Peaks),
   max(Peaks, Loc).

Computables

Sub-symbolic belief state

type(Robot,'KIMP').
localization(Robot,Lztn).

Symbolic knowledge representation

location(Robot,Loc).
not(well_localized(Robot)).

Figure 2: This example illustrates how computable predicates
ground symbolic knowledge (the location of a robot) in sub-
symbolic data (a multi-hypothesis probability distribution).

Figure 2 illustrates the concept using the example of robot
localization. On a sub-symbolic level, the robot estimates its po-
sition in the environment using a probabilistic, multi-hypothesis
localization algorithm. In the example picture, there are three
peaks in the probability distribution over robot positions, so the
localization is rather uncertain. For performing abstract reason-
ing, the robot needs to determine e.g. the most likely pose or
an estimation of the localization accuracy from this continu-
ous data. This is done by small computational methods that
are attached to the semantic properties. These methods, like
loc estimates(L, D), perform the grounding by computing sym-
bolic statements from sub-symbolic data. The example is sim-
plified in that it does not take time into account; in the actual
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implementation, values like the pose of a robot or an object
are represented as fluents; location(R,L) thus becomes loca-
tion(R,L,Time). Through the use of computable predicates, the
symbolic information is always computed from the most current
data and updated when the world changes. Computables are also
used for generating object instances based on the current robot
perception, or to compute qualitative spatial relations, like an
object being on top of another one, based on the objects’ posi-
tions.

While being a rather simple modification from a technical
point of view, the use of computable predicates has several im-
portant implications: First, the resulting representations are in-
herently grounded. Second, computables help to ensure consis-
tency with the outer world, since information is always generated
from the latest observations, and inside the knowledge base,
since information is usually stored only once. Other views on
this information, like qualitative spatial relations, are computed
from it on demand, which makes outdated information less likely.
Third, the system does not discard information: If abstract de-
scriptions are needed, they can be generated, but the more de-
tailed representation is still in the background, like for instance
the robot location probability distribution. In a more traditional
approach, the knowledge would be described with fixed granu-
larity and without access to the underlying data structures. Ob-
viously, the implementations of the computable predicates have
to make sure that the computed results are consistent with the
robot’s knowledge, for example to prevent the robot from being
in multiple locations at once.

3.2 Uncertainty

Household robots do not operate in idealized artificial worlds
that could reasonably be described in logical axioms. Real-world
environments are highly dynamic, the robot being but one of
several agents, and many aspects do not follow deterministic
patterns but are, especially in the light of partial observability,
more adequately represented as probabilistic dependencies. This
is especially true for human preferences and behavioral habits,
which must certainly be considered in a domestic robot’s knowl-
edge base if the robot is to adapt its own behavior to suit the
needs at hand. Also for information obtained from noisy sensors,
it is important that the uncertainty in these observations can be
represented and, if several uncertain sources of information are
combined, correctly propagated.

Moreover, robots will often be instructed to perform tasks
that are not fully specified. A command pertaining to a fairly
complex task will rarely include all the information that is nec-
essary for the robot to derive a sequence of actions that will
achieve the implied goal, for the goal itself may be subject to
uncertainty and more than one state could be considered an
appropriate solution. Robot plans for such complex tasks are,
therefore, not completely specified – a problem that does not
arise in industrial robots or in artificial planning domains. In-
stead, a robot needs to infer the course of action, the set of
objects to consider, action parameters like the right positions,
suitable trajectories, correct grasps, and many more — all of
which may depend on the task context, individual preferences,
past experience and many other parameters.

To address the issues named above, a robot needs reason-
ing techniques allowing it to infer information that is missing

in commands it receives, to reason about potential effects of
activities it observes and causes of situations it observes – or,
more generally, to base its decisions and update its beliefs based
on what can be considered to be most (likely to be) appropriate
given its past experience.

In artificial intelligence, probabilistic graphical models pro-
vide a well-established formalism for the representation of uncer-
tainty. In real-world environments, however, the set of entities we
may need to reason about will vary widely; propositional models
with a fixed set of random variables do not suffice. Furthermore,
a direct coupling between the relational knowledge in our logical
knowledge base and random variables in probabilistic models is
highly desirable.

Our approach: Probabilistic First-Order Models. We use
statistical relational models [11] to represent probabilistic knowl-
edge. These models are first-order, abstracting away from con-
crete entities and representing instead general principles about
objects having similar properties (cf. universal quantification).
Viewed pragmatically, they essentially represent templates for
the construction of graphical models: For any concrete set of
objects we want to consider, the relational model generates, by
repeatedly materializing its template structures, a concrete prob-
abilistic model. This model is typically represented as a graphical
model, which contains as random variables logical ground atoms
(i.e. instances of predicates) that represent statements about
the objects under consideration. In this way, statistical relational
models can be viewed as a means of unifying statistical and rela-
tional knowledge. As concrete representation formalisms, we use
Markov logic networks [21] and Bayesian logic networks [15].

An example application that combines the computables in-
troduced in Section 3.1 with the probabilistic reasoning methods
is shown in Figure 3. The task is to infer which objects need to
be added to complete a partial table setup. To solve this task,
the robot needs to detect the objects and load them into the
knowledge representation using the computable predicates. Us-
ing probabilistic inference and models learned from observations
of human meals and the objects involved, the robot can conclude
what meal the table is most likely being set for, what utensils
and food items are needed for that, and thus what it should
add. Figure 3 shows the camera image of the table on the left
side and the object instances in the knowledge base that were
created from the detected items on the right side. The red ob-
jects on the table were recognized and are passed as evidence
to the probabilistic inference engine. The results are visualized
in the upper region, with the hue value corresponding to their
likelihood (red objects are more likely than orange, green and
blue). One can see that the system infers a plate to eat from
and a cup to drink the detected coffee from as mandatory, and
other items like a glass for the iced tea as very probably needed.

3.3 Knowledge Acquisition

Robots that are to act skillfully in human environments need
an enormous amount of knowledge. A challenge that has long
been neglected is how to acquire this knowledge. In small-scale
laboratory settings, it is often still possible to hand-code the
knowledge required to handle a few objects in a pre-defined way
and to communicate with a human on a limited set of topics.
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Figure 3: Example application: Inferring the objects that are
missing given a partial table setup. Left: Camera image showing
objects on the table. Right: Corresponding object instances in
the knowledge base and objects that are inferred to be missing.
The hue value corresponds to the probability.

This changes dramatically when the robot comes to a real en-
vironment and is to perform several complex tasks, acquire new
tasks or new variants of known ones, manipulate new objects,
and understand human commands in colloquial language.

For being accepted by humans as useful household compan-
ions, robots should also quickly adapt to people’s habits and
learn from few examples. It is thus important to re-use existing
knowledge, ideally both skills and models another robot has al-
ready learned, and information that was originally intended to
be used by humans.

Our approach: Import Knowledge from the WWW In our
ongoing research, we are investigating how information from the
Internet can be used to improve the robot performance. The
World Wide Web is among the largest resources of knowledge of
any kind: Web sites like ehow.com or wikihow.com contain step-
by-step instructions for thousands of tasks. In addition, there
are many sites with cooking recipes. Many of these descriptions
cover not only the default version of a task, like baking normal
brownies, but also provide instructions for variations like diabetic
brownies, peppermint brownies, or gluten-free brownies.

More detailed information on how to manipulate objects can
be obtained from video tutorials that show how exactly a cooking
task is to be performed. Object models can be generated using
image search engines like Google images or repositories of 3D
object models like the Google 3D warehouse. These models help
the robot ground the abstract descriptions into its perception,
i.e. to recognize and manipulate previously unknown objects that
appear in the instructions.

A challenge is to make use of this information: Instructions
are written in ambiguous natural language and need a lot of
common-sense knowledge to be understood correctly. We de-
veloped a system to translate the instructions from natural lan-
guage to a representation in description logic [25], including se-
mantic parsing, disambiguation, and the resolution of the corre-
sponding concept in the ontology. Another problem is irrelevant
or unrelated information. The system presented in [16] is able
to retrieve 3D object models from the web, filter out irrelevant
ones, and match the resulting model in the robot’s environment.

Other important resources are public large-scale knowledge
bases and the methods and resources developed as part of the
Semantic Web initiative. The Cyc ontology [17] contains a huge
amount of knowledge and seems to emerge as a quasi-standard
in robot knowledge representation [23, 6]. The WordNet [8] lex-
ical database helps robots to understand utterances in natural
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Figure 4: Procedure for importing task instructions from natural-
language sources like web sites. The descriptions are parsed, and
the word senses are resolved to ontological concepts.

language. Common-sense knowledge is collected in the Open-
Mind Indoor Common Sense (OMICS) database [13].

3.4 Representation Language

In a robotic system, information has to be represented and pro-
cessed at various levels of abstraction: From raw sensor mea-
surements like the image of a camera or a distance measurement
from a laser range finder, interpreted sensor data like clusters of
point cloud data, recognized and localized objects, information
about properties of object types, up to actions, action parame-
ters, plans, and meta-knowledge about these plans, like problems
that can occur during their execution. All these pieces of infor-
mation are correlated and describe different aspects of objects
and actions with different granularity. Since robots exist over
time, they do not only need to describe the current state of the
world, but also previously perceived world states, past intentions,
actions that were performed, etc.

The task of the knowledge representation is to provide the
means to describe this information on different abstraction levels
and from different sources, assign meaning to the data, and
allow to automatically combine it to perform useful inference.
It further needs to ensure that the same word means the same
thing in all components of the system so that e.g. the result of
an action recognition system can be related to a similar plan in
the robot’s plan library or a command a human has given.

The choice of a knowledge representation formalism deter-
mines both what the robot can describe and what it can do
with its knowledge. Davis et al. [7] give an overview over dif-
ferent approaches, their representational power, the primitives
the representation is composed of, and the kinds of reasoning it
supports.

Our approach: Description logic extended with Computable
Predicates KnowRob is based on description logics as repre-
sentation language, which is both light-weight, structured, and
still expressive enough for most applications. The knowledge is
stored in OWL, which became a common knowledge interchange
format that is supported by many applications, loaded into Pro-
log, and can be accessed via Prolog predicates.

The methods described in Section 3.2 can be queried from
within KnowRob and extend the system with probabilistic in-
ference capabilities. Using the computables described in Sec-
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tion 3.1, the system accesses information from the outer world,
and can also include specialized powerful inference mechanisms
like clustering, classification or other kinds of computation into
the reasoning process. Computables allow to perform complex
inferences using fast procedural implementations, which can be
important for robots interacting with the real world – where re-
sults need to be found in a short time. Memory modules for
perception and a logged belief state of the control program pro-
vide the robot with the ability to reason about the past and to
learn from experience.

3.5 Learning

Domestic robots should seek to adapt to the environments they
operate in and especially to the humans within these environ-
ments. As a robot makes new observations pertaining to proper-
ties of the environment or human preferences and behaviors, it
should attempt to incorporate these observations (or rather the
abstract pieces of information that can be derived from them)
into its knowledge base. Particularly aspects of the world that
are subject to uncertainty and cannot be fully axiomatized call
for learning methods in order to extract the latent patterns in
the vast amounts of relational data that come in via the robot’s
perception system.

In particular, domestic robots should learn about the prefer-
ences and habits of the individuals they are to assist and serve.
Robots should, for example, learn about the food and drinks peo-
ple like to consume, the places at which they prefer to be seated,
the utensils and objects they prefer to use for particular tasks,
etc. Moreover, robots should learn about the environment, e.g.
about the storage locations of particular types of objects and the
roles of places, devices and immovable objects and in activities.
By learning relations from observation, the robot can acquire
much common-sense knowledge it needs for its tasks.

Our approach: Statistical Relational Learning The methods
of statistical relational learning offer a sound way of combin-
ing relational knowledge representation, learning and reason-
ing within a single framework. By using a physically grounded
perception system that abstracts away from low-level sensory
data and represents the information as relational data, i.e. log-
ical atoms with well-defined semantics, we obtain relational
databases that may serve as the inputs to statistical relational
learning problems.

3.6 Introspection and Prediction

Being able to predict which effects an action has, or how action
parameters influence the result, is highly important for planning
actions, for verifying if the chosen action parameters will have
the desired effect, and for checking for side-effects of actions.
In a quasi-artificial world in which all actions have well-defined
prerequisites and effects, this is a simple task: If the world state
matches the preconditions of an action, and if the robot performs
this action, the resulting state can be described by the action’s
postconditions.

As usual, reality looks different: Actions can easily fail, small
variations in the choice of parameters can determine the success,
for example if a glass is securely grasped, falls out of the hand

due to a too low grip force, or gets broken by the robot. Side-
effects can be inherent to the actions or caused by failures, e.g.
collisions with other objects.

Our approach: Prediction based on Physical Simulation and
Semantic Models of the Robot and its Capabilities Pre-
diction just based on logical inference would require an extreme
amount of axiomatized knowledge including temporal and spatial
reasoning, kinematics, detecting collisions etc. Instead, we are
using a realistic physical simulation [18] that gets parametrized
with the knowledge the robot has about its environment. A de-
tailed semantic robot model describes its size, kinematics, dy-
namics, and capabilities of actors and sensors. Plans can be ex-
ecuted within this simulated environment, changes in the world
are be logged with a God’s eye view and translated into logical
statements. Obviously, a simulation is only an abstracted model
of reality and will therefore not always produce the exact result,
but it is likely to be much better than what logical inference on
a limited, axiomatized model will yield.

Based on the simulation result, the robot can answer queries
regarding the outcome of an action, e.g. if the desired result has
been obtained, or if unexpected events like collisions have oc-
curred. Based on these results and data collected during actually
performed actions, the robot can learn models of what it can do,
how fast it can do something, or what can go wrong with which
actions. It can also answer questions regarding why something
was done, or search for solutions why something failed.

3.7 Interaction with Humans

Interacting with humans means to communicate, verbally and
non-verbally. Verbal communication skills are important to re-
ceive commands, and to ask for more information or confirma-
tion. Understanding natural language is thereby challenging, not
only due to ambiguities, but also since humans are used to com-
municate with people with similar common-sense knowledge.
Therefore, they convey much information with very few words
that need to be interpreted in the right context.

Another aspect is non-verbal communication, that is both
to recognize human actions and intentions and to show the own
intentions. Performing actions similar to humans, for example
using a similar sequence of actions, similar trajectories, or simi-
lar arm postures, can make them easier to understand. Though
these challenges are closely related to perception and planning,
the robot also needs knowledge to interpret observations of hu-
man actions and to parametrize the action execution.

Our approach: Verbal Communication and Knowledge-based
Action Interpretation For understanding natural language, we
have the techniques that are described in [25] in the context of
importing task instructions from the WWW. Since the methods
are fast, reliable, and able to understand reasonably complex
instructions, they can also be used for (near) real-time commu-
nication.

We consider non-verbal communication, such as non-
intrusive observation of human activities, similarly important.
The Automated Models of Everyday Activities (AM-EvA, [2])
integrate techniques for human motion tracking, for learning
motion primitives, for motion segmentation, and for abstracting
from motions to actions and activities with statistical relational
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models describing action properties in the complete activity con-
text. All these modules can be accessed from the robot’s knowl-
edge base to analyze observed activities from different view-
points and at different granularities. Parts of the system have
been applied, in conjunction with a transformational planning
system, to the imitation of observed human manipulation ac-
tivities [24]. By performing tasks similar to humans, they can
better be understood by people.

4 Conclusions

On the one hand, knowledge processing is an essential resource
for autonomous robots that perform complex tasks in dynamic
environments. Robots need advanced reasoning capabilities to
infer the control decisions required for competently performing
complex tasks like everyday manipulation. Their knowledge pro-
cessing system has to provide them with common-sense knowl-
edge, with the ability to reason about observations of the en-
vironment, and with methods for learning and adapting over
time. On the other hand, though knowledge representation and
reasoning are well-established techniques in AI, their application
to the problems in robotics is anything but trivial and poses
several hard research challenges. Symbol grounding, reasoning
about complex relations while taking uncertainty into account
or learning in a complex environment are only some of the chal-
lenges. Issues like the acquisition of the large amount of required
knowledge, the prediction of the outcome of complex actions, or
the interaction with humans also need to be tackled.

We believe that robotics can provide both an interesting
application and a set of challenging research problems to the
area of knowledge representation and reasoning.
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