
Understanding and Executing Instructions for Everyday Manipulation Tasks

from the World Wide Web

Moritz Tenorth, Daniel Nyga, Michael Beetz

Intelligent Autonomous Systems, Technische Universität München

{tenorth, nyga, beetz}@in.tum.de

Abstract— Service robots will have to accomplish more and
more complex, open-ended tasks and regularly acquire new
skills. In this work, we propose a new approach to the
problem of generating plans for such household robots. Instead
composing them from atomic actions — the common approach
in robot planning — we propose to transform task descriptions
on web sites like ehow.com into executable robot plans. We
present methods for automatically converting the instructions
from natural language into a formal, logic-based representation,
for resolving the word senses using the WordNet database and
the Cyc ontology, and for exporting the generated plans into the
mobile robot’s plan language RPL. We discuss the problem of
inferring information that is missing in these descriptions and
the problem of grounding the abstract task descriptions in the
perception and action system, and we propose techniques for
solving them. The whole system works autonomously without
human interaction. It has successfully been tested with a set
of about 150 natural language directives, of which up to 80%
could be correctly transformed.

I. INTRODUCTION

One of the key challenges for autonomous personal robots

that are to perform everyday manipulation tasks in house-

holds is the openendedness of the task domain. It is an

open challenge to generate the range of plans that contain

such rich specifications of how actions are to be executed,

what events to wait for before executing the next actions,

which additional behavior constraints to satisfy, and which

problems to watch for.

Generating such plans with today’s planning systems is

infeasible for two main reasons: a lack of expressiveness

of the plan languages [1] and intractable search spaces due

to the large number of objects and actions including their

possible parametrizations.

Thus, a promising alternative is to look up a new task

on webpages such as ehow.com and wikihow.com,

which provide step-by-step instructions for setting the table

(Figure 1), cooking spaghetti or making a kitchen childsafe,

and to convert these natural language instructions into exe-

cutable robot plans. About 45,000 howto-like task descrip-

tions on wikihow.com and even more than 250,000 on

ehow.com, including thousands of household tasks, cover

the whole range of everyday activity. The import procedure

currently only uses information from these two websites to

make sure that all input texts are actually instructions that

are to be executed and not, for example, fictional texts.

The translation of these web instructions can be performed

as a three stage process:

Fig. 1. Example task description from wikihow.com.

1) Translation of the natural language instructions into

an almost working (but buggy) robot plan. Due to the

fact that web instructions are written to be executed by

people with commonsense knowledge, the instructions

may contain ambiguities, missing parameter information

and even missing plan steps. Further important tasks are

the translation from natural language into formal logic

and the grounding of the concepts into physical objects

and locations in the robot’s environment.

2) Debugging of the plan. In a second step, the above

plan flaws are to be detected, diagnosed, and forestalled

using transformational planning based on mental sim-

ulations of the plans in a simulated environment. This

procedure is described in more detail in [2].

3) Plan optimization. Web instructions also fail to specify

how tasks can be carried out efficiently. Thus, trans-

formational planning is applied to find out if stacking

plates before carrying them, carrying cups in each hand,

or leaving the cupboard doors open while setting the

table can increase efficiency [3].

In this paper we design, implement, and empirically eval-

uate a system that performs the first computational task:

the translation of the natural language instructions into an

almost working but buggy robot plan. We limit ourselves

to tasks that can be characterized as “mobile manipulation”

and involve picking up, putting down and handling objects at

different places. Examples of such tasks are setting a table,

cleaning up, making toast or cooking tea.

To the best of our knowledge this work is the first to mine

complex task descriptions from the web and translate them

into executable robot plans. Various approaches exist for

building speech interfaces to robots, but normally, they are

quite limited in terms of vocabulary or allowed grammatical

structures ([4], [5], [6]). Kate et al. [7] use similar methods

as we do for the semantic parsing, but do not apply them to

web instructions and do not provide details of the knowledge

processing and symbol grounding. Perkowitz et al. [8] also

used task descriptions from ehow.com, but only extracted

sequences of object interactions for activity recognition,

while we generate executable action descriptions. Parts of

the current system, the translation from natural language into

a formal task description, have successfully been used for

verifying that a table has been set correctly [9].

We do not see the main contributions of this paper in

the area of natural language processing, where we mainly

combine state-of-the-art techniques. However, it is novel to

apply these techniques to instructions from the web with the

intention of generating executable robot plans. This allows

the robot to acquire new skills in a radically new way. The

main contributions of the paper are the following:

• We demonstrate that it is feasible to automatically

generate executable robot plans from natural-language

instructions taken from websites.

• We present techniques for semantically parsing in-

structions, for automatically resolving the ontological

concepts belonging to the words involved, and for

translating them into grounded symbolic representations

that are linked to the perception and action system.

• We propose methods which exploit common sense

knowledge, a rich environment model and observations

of previous actions for inferring information that is

missing in the howtos.

The remainder of the paper is organized as follows: We start

with the semantic parsing of the instructions (II-A), continue

with the resolution of word senses (II-B), the internal plan

representation (II-C), and finally the export into the RPL

language (II-D). We briefly sketch the plan debugging (II-E)

and explain how the system infers missing information (II-

F). We finish with the evaluation results (III), a discussion

of the performance of the system (IV) and our conclusions.

II. TRANSLATING INSTRUCTIONS

In this section, we will present the different steps from the

instruction in natural language to an executable plan with the

example sentence “Place the cup on the table”. Figure 2 gives

an overview of the structure of our system.

A. Semantic Parsing

Starting from the syntax tree generated by the Stanford

parser, a Probabilistic Context Free Grammar (PCFG) parser

[10], increasingly complex semantic concepts are generated

in a bottom-up fashion using transformation rules similar to

those in [7].

The leaves of the parse tree are words Word(label, pos,

synsets), consisting of a label, a part-of-speech (POS) tag

and the synsets they belong to (see Section II-B). Examples

of POS tags are NN for a noun, JJ for an adjective or CD for

x
x
x
x

x
x

Cyc

Upper Ontology

x
x
x
x

x
x
WordNet

Lexical Database

S

VP

VB NP

DT NN
Set

the table

x
x

x
x

Parser

xx- Getting Word Senses

- Mapping to Ontolocial Concepts

(and

(isa ?PLAN ArrangingObjects)

(objectActedOn ?PLAN ?TABLE)

(isa ?TABLE Table-PieceOfFurniture))

(methodForAction

(set_table1 table1)

(actionSequence

(TheList action1 action2 action3)))

Fig. 2. Overview of the import procedure. After determining the syntactic
structure, the system resolves the meaning of the words and builds up a
formal plan representation which can afterwards be transformed into an
executable robot plan.

a cardinal number. In the following, an underscore denotes

a wildcard slot that can be filled with an arbitrary value.

Words can be accumulated to a quantifier

Quant(Word(,CD,),Word(,NN,)) consisting of

a cardinal number and a unit, or an object

Obj(Word(,NN,),Word(,JJ,), Prep, Quant) that is

described by a noun, an adjective, prepositional

statements and quantifiers. A prepositional phrase

contains a preposition word and an object instance

Prep(Word(,IN,),Obj), and an instruction is described

as Instr(Word(,VB,),Obj,Prep,Word(,CD,)) with a verb,

objects, prepositional postconditions and time constraints.

Since some of the fields are optional, and since the

descriptions can be nested due to the recursive definitions,

this method allows for representing complex relations like

“to the left of the top left corner of the place mat”.

Figure 3 exemplarily shows how the parse tree is translated

into two Obj instances, one Prep and one Instr .

i1

o2 p1

o1

S

VP

VB NP

IN NP

DT NN

DT NN

PP

Place

the cup on

the table

i1 = Instr (

Word (“Place“, , 01452069, 02321167, …),

{ o2 },

{ p1 },

)

p1 = Prep (

Word (“on“, , …),

{ o1 })

o1 = Obj (

Word (“table“, , 07766677, 04209815, …),

,

)

o2 = Obj (

Word (“cup“, , 12852875, 12990335, …),

)

Fig. 3. Parse tree for the sentence “Place the cup on the table” (left) and
the resulting data structures representing the instruction that are created as
an intermediate representation by our algorithm (right).

Some automatic post-processing of the generated data

structures resolves object names consisting of multiple words

(like “stove top”), phrasal verbs (like “turn on”), and pronom-

inal anaphora (references using pronouns like “it”). Cur-

rently, we assume that “it” always refers to the last mentioned

object, which proved to be a sensible heuristic in most cases.

The system also handles conjunctions and alternative instruc-

tions (“and”, “or”), negations, and sentences starting with

modal verbs like “You should...”, as long as the rest of the

sentence is an imperative statement. The slight difference in

meaning presented by the modal verbs cannot be represented

in the robot plan language and therefore currently ignored.

B. Word Sense Retrieval and Disambiguation

Once the structure of instructions is identified, the system

resolves the meaning of the words using the WordNet lexical

database [11] and the Cyc ontology [12]. In WordNet,

each word can have multiple senses, i.e. it is contained in

multiple “synsets”. There exist mappings from the synsets

in WordNet to ontological concepts in Cyc via the syn-

onymousExternalConcept predicate. “Cup” as a noun, for

instance, is part of the synsets N03033513 and N12852875,

which are mapped to the concepts DrinkingMug and Cup-

UnitOfVolume respectively.

Most queries return several synsets for each word, so a

word sense disambiguation method has to select one of them.

The algorithm we chose is based on the observation that the

word sense of the action verb is strongly related to the prepo-

sitions (e.g. “taking something from” as TakingSomething up

vs. “taking something to” as PuttingSomethingSomewhere).

Let concepts(w) be the set of ontological concepts

to which the word w could be mapped. For a sin-

gle instruction (ai, oi, pi) consisting of an action verb

ai, an object oi and a set of prepositions pi ⊆
{on, in, to, from, of, next to, with, without}, we are in-

terested in the most probable pair of concepts (Ai, Oi) ∈
concepts(ai)× concepts(oi). Because the most appropriate

concept for the action is, as mentioned above, largely de-

pendent on the prepositions it co-occurs with, whereas it is

reasonable to assume that the object sense is independent of

the prepositions given the action sense, we compute the pair

by maximizing

P (Oi, Ai | pi) = P (Oi|Ai) · P (Ai|pi)

∝
P (Oi, Ai)

P (Ai)
· P (Ai, pi)

The required probability values appearing in the above

formulas are determined based on a training set (see Sec-

tion III). If there is no statistical evidence about any sense of

a word, the algorithm chooses the meaning with the highest

frequency rank in WordNet.

C. Formal Instruction Representation

With the ontological concepts resolved, the howto can

be formally represented as a sequence of actions in the

knowledge base:

(methodForAction
(COMPLEX TASK ARG1 ARG2 . . .)
(actionSequence

(TheLis t ac t ion1 ac t ion2 . . .)))

Each step action1, action2 etc. is an instance of an action

concept like PuttingSomethingSomewhere. Since the knowl-

edge base contains information about required parameters

for each concept, the system can detect if the specification

is complete. For instance, the action PuttingSomethingSome-

where needs to have information about the object to be

manipulated and the location where this object is to be

placed.

Action parameters are created as instances of objects or

spatial concepts, and are linked to the action with special

predicates. In the example below, the objectActedOn relation

specifies which object the action put1 of type PuttingSome-

thingSomewhere is to be executed on. purposeOf-Generic is

used to describe post-conditions; in this case, the outcome

of the action put1 shall be that the object cup1 is related to

table1 by the on-UnderspecifiedSurface relation.

(i sa put1 PuttingSomethingSomewhere)
(i sa tab le1 Table - P ieceOfFurn i tu re)
(i sa cup1 DrinkingMug)
(objectActedOn put1 cup1)
(purposeOf - Generic

put1
(on - Underpec i f iedSur face

cup1
tab le1))

Time constraints are translated into timeSpan relations,

quantifiers are modelled with the amountOfObject property,

for example

(amountOfObject t a b l e s a l t 1 (Teaspoon - UnitOfVolume 1 2))
(timeSpan boi l ingFood1 (MinutesDurat ion 10 12))

D. Robot Plan Generation

The instructions are to be executed by our B21 robot

acting in a kitchen environment. This scenario exists both

in reality and in a realistic physical simulation (Figure 4). In

this paper, we assume that the robot already has plans for a

set of low-level actions like picking up objects or navigating

to a position inside the environment. Building such a library

including all the issues like object recognition and skillful

manipulation is the topic of parallel research projects as

described in [13].

Fig. 4. B21 robot in the real kitchen and in simulation.

For execution, the formal instruction representation has

to be transformed into a valid robot plan. The plans for

our robot are implemented in extended RPL (Reactive Plan

Language) [14] which provides an expressive and extensible

language for writing robot plans. RPL is an interpreted

language written in Lisp. Objects and locations are described

by designators, qualitative specifications which are resolved

during the plan execution.

The first step in resolving a designator is to match a

conjunction of the required properties against the objects in

the knowledge base. Each object in the knowledge base is

linked to a model in the vision system [15] that allows to

detect it in a camera image. Thus, all candidate objects are

given to the vision system in order to find a suitable object

in the scene. A query for such a vision model looks like

(and
(i sa ?ob j Cup)
(s ta teOfObj ?ob j Clean)
(co l o r ?ob j Green)
(v is ionModel ?ob j ?model))

Object designators are not only grounded in the percep-

tion, but also linked to the action system. Object instances

in the knowledge base are annotated with information how

to manipulate them. Currently, these are links to specialized

grasping routines for cups, plates, or pieces of silverware.

More details about the concept of designators can be found

in [3].

Each single instruction is translated into an achieve state-

ment whose parameter list has the goal to be achieved as

the first entry. Depending on the type of action, additional

parameters can be specified. For each goal, there exists a plan

to achieve it. Several low-level plans for goals like entity-

at-place have already been implemented manually and are

available to the system.

(d e f i n e - h i g h - l e v e l - p l a n (achieve (put1))
(w i t h -des igna to rs ((drinkingmug1 ‘ (an e n t i t y

(type cup)))
(tab le1 ‘ (an e n t i t y

(type t a b l e)))
(l o c a t i o n 1 ‘ (a l o c a t i o n

(on , tab le1))))
(achieve (loc drinkingmug1 l o c a t i o n 1))))

E. Plan Debugging and Optimization

The plan debugging and optimization are not the main

topic of this paper and are described in [2], but since these

steps are usually necessary for obtaining working plans, we

will briefly sketch the procedure and refer to the respective

literature for details.

In a first step, the system executes the plan in a realistic

physical simulation and records data, e.g. about the object

interactions, collisions, and the times needed for each action.

The debugging process then matches flaw specifications

against the recorded data and, if problems are detected, infers

the most probable reason. An example of such problems

could be that the robot collides with a chair that is standing

in front of the table while trying to put items onto the

table top. When such flaws are detected, the system applies

transformations [3] to the plan which add parameters to

object specifications, change the order of actions, or insert

additional goals in order to eliminate the source of the error.

In this example, a suitable fix would be to first remove the

chair and put it back to its original location after having

performed the desired actions.

Low performance can also be seen as a flaw which can

be fixed by suitable transformations as described in [3], for

example by using a container for transporting objects, or by

using both hands for carrying objects and thereby making

better use of the robot’s resources.

F. Inference of Missing Information

Many plan flaws are caused by incomplete action spec-

ifications: Details are often omitted in the web instructions

since humans can easily infer them using their common sense

knowledge. Some pieces of information also depend of the

actual environment, like the position where an object should

be put, and thus cannot be specified in general. The robot’s

knowledge processing system [16] provides the information

for inferring these details.

Fig. 5. Visualized results of queries to the environment model represented
in the knowledge base including the function or current state of objects. The
images show objects that serve for cooking food (left), parts of the oven
that cause a Boiling event (center) and objects that contain drinking vessels
(right).

Environment-specific information is acquired from the

environment model and from observations of previous ac-

tions. Our environment model [17] is created from 3D laser

scans in which objects are detected and classified. These

objects are then represented as instances of concepts in the

knowledge base, e.g. table1 as an instance of the general

concept EatingTable, and therefore inherit all the properties

of the respective concept:

(i sa tab le1 Eat ingTable)
(he ightOfObject tab le1 0.74)
. . .
(xCoordinate tab le1 2.31)
. . .

This complete integration of the environment model into

the knowledge base allows for reasoning on general object

properties (e.g. that a table can be a supporting entity for

other objects) as well as environment-specific information

like the position or dimensions of objects (Figure 5). Using

such information, the system translates relative position

specifications from the instructions into global environment

coordinates.

Log data of actions performed by the robot [18] or

observed from humans [19] can also be accessed from within

the knowledge base. Consider the problem of inferring that

a cup is to be put on the table when the instruction only

states “in front of the chair”. From previous observations of

different tasks, the robot has log data of which objects it has

put on top of which supporting objects at which position.

From this information, it learns a classifier that generates

rules like “if x between 0.6 and 1.8, and y is between 2.32

and 2.98, and if the object is of type tableware, the supporting

entity is table1”. These classifiers are learned on demand and

embedded into the knowledge representation as described in

[16].

These pieces of information are used for determining the

most probable plan flaws and suitable bug fixes. For learning

the concepts, it is sufficient to have log data of similar actions

(like objects being put on the table), but the robot does not

need to have seen the whole task, like setting the table,

beforehand.

III. EVALUATION

We tested the implemented system on 88 instructions from

a training set and another 64 from a test set of howtos

which are taken from ehow.com and wikihow.com1.

Since many of the errors are caused by the syntax parser,

we evaluate the system both with automatically parsed syntax

trees and manually created ones in order to better show the

performance of the other components. For the training set, we

manually added 72 missing mappings from WordNet synsets

to Cyc concepts; the test set was transformed without such

manual intervention. We manually determined the translation

correctness by verifying that all relevant information from

the natural language instruction was transformed into the

formal representation. Executing the plans is, as mentioned

earlier, not yet possible since missing information needs

to be inferred, and due to insufficient robot manipulation

capabilities.

First, we trained the disambiguator on the training set

using manually created parse trees. Afterwards, we ran the

system including the syntax parser on the same set of howtos,

the results are shown in the upper part of Table I. With

correct parse trees, the system achieves a recognition rate

of 82% on the training set and even 91% on the test set

before the ontology mapping and the transformation of the

instructions into the formal representation.

aut. parsed man. parsed

Training Set:

Actual Instructions 88 100% 88 100%

Correctly Recognized 59 67% 72 82%
False Negative 29 33% 16 18%

False Positive 4 5% 2 2%

Test Set:

Actual Instructions 64 100% 64 100%

Correctly Recognized 44 69% 58 91%
False Negative 20 31% 6 9%

False Positive 3 5% 6 9%

TABLE I

SUMMARY OF THE EVALUATION ON INSTRUCTION LEVEL

The remaining 18% resp. 9% have either been recognized

incorrectly (missing object or preposition in the instruction)

or not at all. The latter group also comprises instructions

that are not expressed as imperative statements and, as such,

are not supported by the current implementation. In both test

runs, errors caused by the syntax parser result in a significant

decrease in the recognition rate (15 percentage points in the

training set, 22 in the test set).

Table II shows the results of the translation into the formal

instruction representation. In the training set, 70 of the 72

instructions which have been recognized in the previous

step could successfully be transformed, the two errors were

caused by mappings of word senses to concepts that cannot

1The complete training and test set can be downloaded from
http://ias.cs.tum.edu/∼tenorth/icra10 ehow.txt

be instantiated as objects in Cyc: the concept PhysicalAm-

ountSlot in the commands “Use the amount that...” and the

relation half in “Slice in half“.
aut. parsed man. parsed

Training Set:

Actual Instructions 88 100% 88 100%

Import Failures 31 35% 18 20%

Incorrectly/Not recognized 29 94% 16 89%

Missing WordNet entries 0 0
caused Import Failures 0 0% 0 0%

Missing Cyc Mappings 0
caused Import Failures 0 0% 0 0%

Misc. Import Errors 2 6% 2 11%

Disambiguation Errors 0 0

Correctly imported into KB 57 65% 70 80%

.

Test Set:

Actual Instructions 64 100% 64 100%

Import Failures 33 52% 28 44%

Incorrectly/not recognized 20 61% 6 21%

Missing WordNet entries 3 3
caused Import Failures 2 6% 2 7%

Missing Cyc Mappings 14 23
caused Import Failures 11 33% 20 71%

Misc. Import Errors 0 0% 0 0%

Disambiguation Errors 2 3

Correctly imported into KB 31 48% 36 56%

TABLE II

SUMMARY OF THE EVALUATION ON KNOWLEDGE BASE LEVEL

The results of the translation of the test set show that

two external components are the main sources of error:

40% of the import failures are caused by the syntax parser,

since a decrease from 61% to 21% of failures in the initial

recognition step can be observed when switching to manually

created syntax trees. In this case, missing Cyc mappings and

WordNet entries are the main problem, causing about 78%

of the remaining errors.

Test set of Howtos Instr. Level KB Level KB+maps

How to Set a Table 100% 100% 100%

How to Wash Dishes 92% 46% 62%

How to Make a Pancake 93% 73% 81%

How to Make Ice Coffee 88% 63% 88%

How to Boil an Egg 78% 33% 57%

TABLE III

PER-HOWTO EVALUATION OF THE IMPORT PROCEDURE.

An evaluation per howto (Table III) shows that a rea-

sonably large number of the instructions can be recognized

correctly. The last column contains the results after having

added in total eight mappings, including very common ones

like Saucepan or Carafe, which will also be useful for many

other instructions. The generation of a robot plan from the

formally represented instruction is a simple translation from

Cyc concepts to RPL statements which did not produce any

further errors.

IV. DISCUSSION

The translation into a formal instruction representation

suffers from two main sources of errors: Especially for

longer sentences, the quality of the syntax trees generated

by the Stanford parser decreases, which has a strong impact

on the recognition rate. In the test set, 14 of 20 false

negatives are caused by the parser. Missing WordNet entries

or missing mappings to Cyc concepts are another important

issue. However, 11,000 Cyc concepts are already mapped

to a WordNet synset, and we expect this source of error to

have less impact when having added mappings for the most

common household items. As the evaluation shows, this can

significantly improve the results.

The task of the presented system is to generate an initial

plan that contains as much information as we can obtain

from the natural language instruction. In many cases, this

is not enough for successful execution, and the missing

pieces of information need to be inferred in subsequent

processing steps. We presented some methods for resolv-

ing spatial relations and qualitative specifications, but other

action parameters are still hard to infer, for example if and

how tasks scale with the number of people: When setting a

table, there is one plate per person, but only one soup tureen

for all of them.

Considering safety issues and adapting the lower-level

manipulation modules to the objects at hand and their current

states are also crucial for successful operation, but need to

be done at later stages in the plan generation process. We

are investigating methods of assessing the degree to which

the howto has been understood (i.e. the words that have

been translated without problems) and for communicating

the result of the translation to a human to check it. Like

for any other plan, a safety controller will still be needed to

avoid potentially harmful motions.

V. CONCLUSIONS

In this paper we presented a novel approach for generating

plans for household robots: Instead of composing plans from

a set of atomic actions, we propose to generate plans by

transforming natural-language task instructions from web-

sites like ehow.com into formal, executable robot plans.

These plans are much better suited to the domain of complex

mobile manipulation, like for instance common household

tasks, since they inherently handle issues like incomplete task

specifications, unknown start and goal states, or constraints

to the order of actions. We developed techniques for seman-

tically parsing the natural-language instructions, for trans-

forming them into grounded symbolic plan representations,

and for generating robot plans out of this information. For

inferring information missing in the instructions, we propose

techniques for debugging the plan and adding required in-

formation based on a rich environment model and collected

experiences. The evaluation of our implementation shows

that it is feasible to correctly transform about 80% of the

instructions taken from websites. A better syntax parser and

more mappings between WordNet and Cyc will help increase

this number. We believe that this system is an important

module for scaling mobile household robots towards task

complexity by giving them the ability to autonomously

extend their task repertoire.

VI. ACKNOWLEDGMENTS

This work is supported in part within the DFG excellence

initiative research cluster Cognition for Technical Systems –

CoTeSys, see also www.cotesys.org.

REFERENCES

[1] M. Fox and D. Long, “Modelling mixed discrete-continuous domains
for planning,” Journal of Artificial Intelligence Research, vol. 27, pp.
235–297, 2006.

[2] L. Mösenlechner and M. Beetz, “Using physics- and sensor-based
simulation for high-fidelity temporal projection of realistic robot
behavior,” in 19th International Conference on Automated Planning

and Scheduling (ICAPS’09)., 2009.
[3] A. Müller, “Transformational planning for autonomous household

robots using libraries of robust and flexible plans,” Ph.D.
dissertation, Technische Universität München, 2008. [Online].
Available: http://mediatum2.ub.tum.de/node?id=645588

[4] J. Zelek, “Human-robot interaction with minimal spanning natural
language template for autonomous and tele-operated control,” in Pro-

ceedings of the 1997 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 1997. IROS ’97., vol. 1, Sep 1997.
[5] S. Tellex and D. Roy, “Spatial routines for a simulated speech-

controlled vehicle,” in HRI ’06: Proceedings of the 1st ACM

SIGCHI/SIGART conference on Human-robot interaction. New York,
NY, USA: ACM, 2006.

[6] N. Mavridis and D. Roy, “Grounded situation models for robots:
Where words and percepts meet,” in Proceedings of the 2006

IEEE/RSJ International Conference on Intelligent Robots and Systems,
2006, pp. 4690–4697.

[7] R.J.Kate, Y. W. Wong, and R. Mooney, “Learning to Transform Nat-
ural to Formal Languages,” in Proceedings of the Twentieth National

Conference on Artificial Intelligence (AAAI-05), 2005, pp. 1062–1068.
[8] M. Perkowitz, M. Philipose, K. Fishkin, and D. J. Patterson, “Mining

models of human activities from the web,” in WWW ’04: Proceedings

of the 13th international conference on World Wide Web. ACM, 2004,
pp. 573–582.

[9] D. Pangercic, R. Tavcar, M. Tenorth, and M. Beetz, “Visual scene
detection and interpretation using encyclopedic knowledge and formal
description logic,” in Proceedings of the International Conference on

Advanced Robotics (ICAR)., 2009.
[10] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in

ACL ’03: Proceedings of the 41st Annual Meeting on Association for

Computational Linguistics. Morristown, NJ, USA: Association for
Computational Linguistics, 2003, pp. 423–430.

[11] C. Fellbaum, WordNet: an electronic lexical database. MIT Press
USA, 1998.

[12] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira, “An intro-
duction to the syntax and content of Cyc,” Proceedings of the 2006

AAAI Spring Symposium on Formalizing and Compiling Background

Knowledge and Its Applications to Knowledge Representation and

Question Answering, pp. 44–49, 2006.
[13] M. Beetz, F. Stulp, B. Radig, J. Bandouch, N. Blodow, M. Dolha,

A. Fedrizzi, D. Jain, U. Klank, I. Kresse, A. Maldonado, Z. Marton,
L. Mösenlechner, F. Ruiz, R. B. Rusu, and M. Tenorth, “The assistive
kitchen — a demonstration scenario for cognitive technical systems,”
in IEEE 17th International Symposium on Robot and Human Interac-

tive Communication (RO-MAN), Muenchen, Germany, 2008, invited
paper.

[14] D. McDermott, “A Reactive Plan Language,” Yale University,” Re-
search Report YALEU/DCS/RR-864, 1991.

[15] U. Klank, M. Z. Zia, and M. Beetz, “3D Model Selection from an
Internet Database for Robotic Vision,” in International Conference on

Robotics and Automation (ICRA), 2009.
[16] M. Tenorth and M. Beetz, “KnowRob — Knowledge Processing for

Autonomous Personal Robots,” in IEEE/RSJ International Conference

on Intelligent RObots and Systems., 2009.
[17] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz,

“Towards 3D Point Cloud Based Object Maps for Household Envi-
ronments,” Robotics and Autonomous Systems Journal (Special Issue

on Semantic Knowledge), 2008.
[18] A. Kirsch, “Integration of programming and learning in a control

language for autonomous robots performing everyday activities,”
Ph.D. dissertation, Technische Universität München, 2008. [Online].
Available: http://mediatum2.ub.tum.de/node?id=625553

[19] J. Bandouch, F. Engstler, and M. Beetz, “Accurate human motion
capture using an ergonomics-based anthropometric human model,”
in Proceedings of the Fifth International Conference on Articulated

Motion and Deformable Objects (AMDO), 2008.

