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Abstract
Successfully accomplishing everyday manipulation tasks re-
quires robots to have substantial knowledge about the objects
they interact with, the environment they operate in as well
as about the properties and effects of the actions they per-
form. Often, this knowledge is implicitly contained in man-
ually written control programs, which makes it hard for the
robot to adapt to newly acquired information or to re-use
knowledge in a different context. By explicitly representing
this knowledge, control decisions can be formulated as in-
ference tasks which can be sent as queries to a knowledge
base. This allows the robot to take all information it has at
query time into account to generate answers, leading to bet-
ter flexibility, adaptability to changing situations, robustness,
and the ability to re-use knowledge once acquired. In this pa-
per, we report on our work towards a practical and grounded
knowledge representation and inference system. The system
is specifically designed to meet the challenges created by us-
ing knowledge processing techniques on autonomous robots,
including specialized inference methods, grounding of sym-
bolic knowledge in the robot’s control structures, and the ac-
quisition of the different kinds of knowledge a robot needs.

Introduction
Autonomous robots are becoming more and more skilled in
object manipulation and are extending their capabilities to-
wards complex manipulation tasks, including everyday ac-
tivities like setting a table, tidying up or preparing meals.
Such tasks are extremely knowledge-intensive: Competently
taking the decisions involved in these activities requires a
robot to have access to various kinds of knowledge. Ency-
clopedic knowledge is required as a general vocabulary for
describing the types and properties of objects and actions.
It needs to be combined with spatial knowledge about the
environment for planning actions and locating the objects
required for a task. The abstract knowledge about object
classes needs to be linked to physical objects the robot de-
tects and localizes in the environment. Models of the effects
of actions and about processes help a robot to reason about
the consequences of its actions and to detect and eliminate
execution flaws.

These kinds of knowledge and the required inferences dif-
fer in many respects from what is commonly investigated in
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knowledge representation research in artificial intelligence
(AI). Existing knowledge bases like Cyc (Lenat 1995) or
SUMO (Niles & Pease 2001) are very extensive and cover
a wide range of concepts, but they lack much of the prac-
tical knowledge a robot needs. Cyc, for example, describes
grasping as a sub-class of holding an object, but does not
tell the robot where to stand for grasping an object, which
grasp to use, or which force to apply. The reason is that these
knowledge bases were created for understanding texts rather
than executing actions. Knowledge bases for robots there-
fore have some very specific demands compared to general-
purpose knowledge representation systems as commonly re-
garded in AI research:

1. Robot-specific knowledge: Provide the different kinds of
knowledge a robot needs, like a detailed general ontology,
task descriptions, information about object properties, and
environment models.

2. Grounding and integration with the robot: To have mean-
ing to the robot, the abstract symbols in the knowledge
base need to be related to actions, percepts, and to the
robot’s internal data structures.

3. Integration of knowledge sources: Some kinds of knowl-
edge may be available from existing knowledge bases,
others can be imported from sources on the Internet, oth-
ers have to be acquired by the robot through sensing, ab-
stracting and reasoning. These initially separate areas of
knowledge need to be integrated and described in a com-
mon interlingua to be jointly used for inference tasks.

4. Special-purpose inference methods: Some inferences
are required for a robot, but less important in
other knowledge-based applications, for example spatio-
temporal reasoning or the projection of action effects. In
other cases, special-purpose inference can exploit special
properties of the problem domain in order to solve theo-
retically hard problems in rather short time, as required by
real-time robotic applications.

Creating practical, extensive knowledge bases that meet
these demands and equip robots with sufficient knowledge
to autonomously perform complex manipulation tasks thus
remains a challenging problem. In this paper, we give an
overview of our work towards such a knowledge processing
system. Our focus is on explaining how the different com-
ponents, the different kinds of knowledge and the inference



Figure 1: Overview of the different sources of knowledge integrated in the KNOWROB system.

techniques contribute to the overall system. Where possible,
we refer to our prior work for more detailed descriptions of
the individual components.

System architecture
KNOWROB, the knowledge processing system described
in this paper, has been originally proposed in Tenorth &
Beetz (2009) and has since been extended with several
modules. The program code and ontology models are pub-
licly available as open-source software as part of the ROS
robot middle-ware.1 Figure 1 describes the different kinds of
knowledge and knowledge processing methods that are in-
tegrated in the system. Expressive representations for time,
space, objects, environment models, actions, processes, the
robot’s hardware and capabilities, as well as observations of
human actions form the core of the system. Special inference
methods for robotics-related applications operate on these

1http://ros.org/wiki/knowrob

representations and provide for instance spatio-temporal in-
ference, projection and planning capabilities. Several knowl-
edge acquisition methods allow the robot to (semi-) au-
tonomously acquire knowledge from sources on the Internet,
using its own perceptual capabilities, or by observing human
activities. Interfaces to the robot’s perception system serve
for grounding abstract object information and for reasoning
about physical objects in the environment. A tell/ask inter-
face provides reasoning services to the robot control pro-
gram in order to infer control decisions based on the content
of the robot’s knowledge base.

In order to combine the different kinds of knowledge from
different sources that will be described in the following sec-
tions, the robot needs to describe them in some common
language that encodes their meaning and allows automated
inference. KNOWROB uses the Web Ontology Language
(OWL) for storing knowledge, and a Prolog-based represen-
tation and reasoning system for integrating the different in-
ference modules.



Types of robot knowledge
In this section, we will describe in more detail which kinds
of knowledge are represented in the KNOWROB system and
where they can be acquired from.

Encyclopedic and common-sense knowledge
Encyclopedic knowledge is the kind of knowledge com-
monly found in a dictionary: definitions of types of actions
and objects, such that cups are a kind of container, have
a handle, and are used for drinking liquids. Such knowl-
edge, also called an “ontology”, can, to a certain degree,
be obtained from existing knowledge bases like OpenCyc.
However, it usually has to be complemented with more de-
tailed descriptions, such as the properties of specific types
of objects. Tenorth et al. (2011) showed that for manufac-
tured products, this kind of information can be mined from
sources on the Web like shopping websites, which provide
both a categorization of the products and detailed descrip-
tions of their properties.

The encyclopedic knowledge is complemented by
common-sense knowledge, additional information about the
concepts that most humans immediately associate with
them, like the fact that cups can break or that coffee may be
spilled if a full cup is moved too quickly. Since these facts
appear to be so obvious, they are normally not written down
explicitly and are thus hard to find. There are, however, some
initiatives such as the Open Mind Indoor Common Sense
(OMICS) project that try to collect this knowledge from vol-
untary Internet users. Kunze, Tenorth, & Beetz (2010) de-
scribe techniques to convert this information from natural
language into the OWL representation used in KNOWROB.

Objects and environment models
Spatial knowledge about the environment and the types and
properties of the objects found therein is essential for a
robot performing mobile manipulation tasks. Robots need
this knowledge to navigate, to locate objects, and to read
information about their properties. Our robots are equipped
with a semantic environment map that is represented in the
knowledge base in terms of instances of the respective ob-
jects, e.g. pieces of furniture, at the locations where they
have been recognized (Figure 2). Tenorth et al. (2010) de-
scribe the representation and different use cases for such a
semantic environment model in more detail.

Actions and processes
The knowledge base further contains an extensive ontol-
ogy of actions and processes. While actions are actively and
intentionally performed by a robot or a human, processes
take place more or less automatically whenever their pre-
conditions are fulfilled. Often, they are caused as side-effects
of actions, like a baking process that transforms cookie
dough into a cookie after the robot has put the dough into
the oven. KNOWROB contains a unified representation for
both actions and processes that supports representation, pro-
jection, and planning.

Actions can be described using a set of properties to spec-
ify their inputs and pre-conditions, their effects, as well as

Figure 2: Semantic environment model describing the poses
of pieces of furniture, the objects they contain, and their ar-
ticulation properties.

their hierarchical composition. The representation is similar
to Hierarchical Task Networks (HTN) used in robot plan-
ning. The representation in KNOWROB combines declara-
tive specifications of the inputs and results of actions, used
for planning purposes, with projection rules to qualitatively
compute the effects of actions on the current world state.
The current representation can be expanded to a certain
level of granularity, below which actions are regarded as
“black boxes”. We are currently investigating methods to
overcome this limitation, for example using constraint-based
motion specifications, which provide a more explicit and
more transparent interface to the action execution level.

Self-models of the robot’s capabilities
In order to reason about what it can and cannot do, or
which capabilities are missing for performing an action, a
robot needs a detailed model of its own components. Kunze,
Roehm, & Beetz (2011) present the Semantic Robot De-
scription Language, a formal description of the robot’s kine-
matics, of the semantics of the different body parts, its hard-
ware and software components, and of higher-level capabil-
ities such as navigation or object recognition. Actions can
define dependencies on capabilities and components that a
robot needs to have for this action to be executable. These
dependencies, as well as inter-dependencies among capabili-
ties and components, can be described and verified. If some-
thing is found to be missing, the robot can check whether
this capability can be acquired in some way.

Specialized inference methods
Practical knowledge bases that are used by robots during
task execution need to provide answers fast enough to not
slow down the robot’s operation. The problem is that, in
the general case, most of the required inferences are pro-
hibitively complex. However, they often become much eas-
ier if constraints of the domain the robot operates in are
taken into account. In these cases, specialized inference
techniques can help to compute results fast enough for the
robot to use.



Computable predicates
The computable predicates in KNOWROB are realized by at-
taching computational procedures to semantic relations in
the knowledge base that describe how these relations can be
evaluated based on the robot’s belief state. This concept can
be used for different purposes: First, it helps to speed up the
evaluation of certain relations by using fast computation in-
stead of complex inference. Second, computable predicates
can be used for calculating relations beyond pure logical in-
ference, for example to derive qualitative spatial relations
like ”on top of“ or ”inside of“ from metric information about
object poses. And third, they allow to generate abstract sym-
bolic views on continuous data structures on demand during
the inference process. This custom abstraction helps to en-
sure consistence and currentness of data and keeps the orig-
inal, continuous data as reference, thereby avoiding the loss
of information due to premature abstraction into symbolic
representations. An example of a computable definition can
be found in the middle block in the right part of Figure 3.
The definition defines that the relation on-Physical can be
computed using holds(on physical(T,B), Time).

Spatio-temporal reasoning about change
Robots act in dynamic environments and need to be able
to describe the world state at different points in time.
KNOWROB’s object representation (Figure 3) supports
spatio-temporal reasoning about the changing locations of
objects.Object poses are described based on the event that
created the pose information (see Figure 3 left). This ap-
proach allows to store multiple perceptions over time, en-
abling the robot to memorize past world states. It can also be
used to store non-perceptual information about object poses,
e.g. predictions where objects can be found or plans where
objects shall be put, without rendering the knowledge base
inconsistent. Based on this representation, qualitative rela-
tions between objects, e.g. a relation rel(A,B), can be com-
puted for an arbitrary point in time T using the holds(rel(A,
B), T) predicate. It first reads the pose of the latest perception
of the objects before time T and then computes the relation
based on this data (Figure 3 right). Computable predicates
can be used to provide a simplified query mechanism using
the current time as default.

Integration with the robot
The integration of the knowledge base with other compo-
nents of the robot control system is a very important topic
that is much more than just a matter of system integration.
It rather involves several hard research challenges, for in-
stance how to integrate the abstract, symbolic knowledge
with the robot’s perception and action execution system,
how to ground symbols in perception, and how to infer
which control decisions.

Interface to the perception system
The integration of the robot’s knowledge base with its per-
ception system allows the robot to reason about objects it
has perceived. Whenever the robot detects and recognizes
objects, they are added to the world representation in the

Figure 3: Spatio-temporal representation of object poses and
computation of qualitative spatial relations based on this in-
formation.

knowledge base as described by Pangercic et al. (2010). The
perception interface thereby builds up the representation de-
picted in the left part of Figure 3.

To maintain a consistent belief state and to correctly re-
solve the identities of the perceived objects over time, the
raw object detections from the perception system can be fil-
tered, for instance using the approach presented by Blodow
et al. (2010).

Inferring control decisions
In order to use the robot’s knowledge during task execution,
the control decisions that need to be taken must be formu-
lated in terms of inference tasks that can be solved based
on the robot’s knowledge and its belief about the world.
Beetz, Mösenlechner, & Tenorth (2010) introduced the Cog-
nitive Robot Abstract Machine (CRAM), a toolkit for pro-
gramming cognition-enabled robot control programs. The
KNOWROB knowledge base is a central component of this
framework and closely interacts with the CRAM Plan Lan-
guage (CPL). Task specifications in CPL plans contain ab-
stract descriptions of object or locations, called designators,
which can be resolved during run-time by sending an infer-
ence task to the knowledge base. To execute a task like “open
the container where you think cups are stored”, the robot has
to reason about likely storage locations of cups in the envi-
ronment, needs to locate the respective container, and also
has to find out how it can be opened. This inference task can
be formulated as follows; its result is visualized in Figure 2.

?− r d f t r i p l e ( knowrob : ’ in−Con tGene r i c ’ , knowrob : ’ Cup67 ’ ,B) ,
r d f h a s (B , knowrob : o p e n i n g T r a j e c t o r y , T r a j ) ,
f i n d a l l ( P , r d f h a s ( Tra j , knowrob : p o i n t O n T r a j e c t o r y , P ) ,

P o i n t s ) .

Knowledge acquisition and exchange
When leaving the world of controlled, limited lab experi-
ments, a robot needs much broader knowledge about all the



different kinds of objects it encounters. The efficient acqui-
sition of this knowledge then becomes a challenging prob-
lem which we try to approach by exploiting existing sources
of knowledge as much as possible. We work on using in-
formation from the Internet, originally created for humans,
on analyzing observations of human manipulation activities
that could serve as an example how to perform a task, and on
methods for sharing information among robots. These meth-
ods are largely complementary: While web sites mainly pro-
vide abstract, symbolic knowledge, observations of humans
give information about motions and locations.

Knowledge acquisition from the Web
The World Wide Web is a valuable source of knowledge
that can be exploited to bootstrap robot knowledge bases:
Several web sites like ehow.com and wikihow.com provide
thousands of step-by-step instructions how to perform ev-
eryday tasks, other websites provides recipes for cooking
meals. We have developed methods to translate such natural-
language instructions into a logical representation in the
robot’s knowledge base (Tenorth, Nyga, & Beetz 2010) and
finally into executable robot plans.

Information about the properties and appearance of prod-
ucts can be mined from shopping websites, where the prod-
uct pages list object properties, while the website’s category
can be transformed into an ontology of products to be added
to the knowledge base (Tenorth et al. 2011). Since most
products are listed together with their pictures, they can not
only be abstractly described, but can also be recognized in
the environment (Pangercic, Haltakov, & Beetz 2011).

Learning from observations of human activities
Observations of humans can provide the robot with infor-
mation that is hard to obtain from other sources, like the
motions to perform a task. The challenge is how make this
source of information accessible to the robot for interpreta-
tion and reasoning, that is, how to assign semantic meaning
to the observed continuous motions. In a first step, we seg-
ment the observations and represent these segmented obser-
vations in the knowledge base in terms of action instances
(Tenorth, Bandouch, & Beetz 2009). For the robot to use
the observations, the segments are classified and described
using the same language that is also used in the rest of the
knowledge representation system for modeling actions, ob-
jects, and spatial information. Action parameters are deter-
mined based on co-temporal events like RFID tag detections
that allow to determine properties like the objectActedOn.
Starting from the fine-grained initial segmentation, we can
apply knowledge about the hierarchical composition of ac-
tions to generate coarser-grained action descriptions, for ex-
ample to go from the level of single reaching motions to the
level of transport actions (Beetz et al. 2010).

Exchange of knowledge among robots
The acquisition of knowledge, i.e. the translation from
any kind of input format into a formal representation in
the robot’s knowledge base, is often a complex and time-
consuming procedure that is difficult to completely autom-
atize. Ideally, it should only be needed once for each piece

of information: If robots could exchange information about
tasks they have learned, object models they have created,
or environments they have explored, it would save other
robots from having to acquire this knowledge by themselves.
Such an exchange system could thus significantly speed-up
knowledge acquisition using a distributed approach.

Creating such a system, a kind of “Wikipedia for robots”,
is the goal of the RoboEarth project (Waibel et al. 2011).
KNOWROB is a central component of this project, provid-
ing the representations for describing the knowledge to be
exchanged as well as the inference procedures needed to au-
tonomously exchange information: When exporting knowl-
edge, it has to decide which information could at all be use-
ful to others and how this information needs to be processed
to be exchangeable (e.g. be transformed into a different co-
ordinate system). When downloading information, it has to
select which pieces of information could be useful in the cur-
rent task context, if the robot has all required capabilities to
make use of them, and if they have further dependencies that
need to be resolved.

Related work

Recently, there have been several other attempts to re-
integrate knowledge processing techniques into robotic sys-
tems. The focus of the ORO ontology (Lemaignan et al.
2010) is on human-robot interaction and on resolving am-
biguities in dialog situations. This capability was for exam-
ple described by Ros et al. (2010), where the robot inferred
based on its knowledge about the objects in the environment
and their properties which queries it should ask to disam-
biguate a command. ORO uses OWL as representation for-
mat and a standard DL reasoner for inference. An underlying
3D geometrical environment representation serves for com-
puting spatial information and for updating the internal be-
lief state about the positions of objects (Siméon, Laumond,
& Lamiraux 2001).

The knowledge base presented by Daoutis, Coradeshi,
& Loutfi (2009) is an important part of the PEIS ecology
project (Physically Embedded Intelligent Systems). PEIS in-
vestigates distributed intelligent systems consisting of mo-
bile robots, but also of sensors embedded into the environ-
ment which are all integrated into a common framework.
The PEIS knowledge base is realized as an extension of the
Cyc inference engine. On the one hand, this gives the sys-
tem full access to the large Cyc ontology, but it comes at the
cost of slower inference, of irrelevant knowledge in several
branches of the ontology, and of a lack of knowledge in areas
like robotics or mobile manipulation.

The OUR-K system by Lim, Suh, & Suh (2011) is the suc-
cessor of the OMRKF framework (Suh et al. 2007). OUR-
K is an extensive system that describes a variety of as-
pects centered around five main kinds of knowledge: con-
texts, objects, spaces, actions and features. Compared to the
KNOWROB ontology, OUR-K is lacking the notion of pro-
cesses, robot self-models, and having simpler action descrip-
tions.



Conclusions
In this paper, we gave an overview of KNOWROB, a knowl-
edge processing system for autonomous robots. KNOWROB
integrates various kinds of knowledge, like encyclopedic
knowledge, spatial information and common-sense knowl-
edge, from multiple sources in a common representation and
reasoning framework. It supports robot-specific reasoning
tasks such as spatio-temporal reasoning about changing ob-
ject configurations. We further pointed to methods we devel-
oped for acquiring knowledge from the Internet, from obser-
vations of human activities, and from the robot’s own sen-
sory system.

Though KNOWROB is a rather extensive and imple-
mented system, there are still open challenges to be over-
come: We need a better integration of non-symbolic infor-
mation, e.g. to reason about motions, forces or geometric
properties. Actions should be described in more detail, e.g.
including the expected outcome or potential problems, and
should be linked to learning techniques. In the European
project ROBOHOW.COG2, we are investigating how to ex-
tend the methods presented in this paper towards a com-
plete system that can autonomously learn novel tasks by au-
tonomously combining information from the Internet with
visual and tactile information from human demonstrations.

We believe that equipping robots with sufficient knowl-
edge and effective reasoning capabilities is key to realiz-
ing flexible and robust robot behavior and to scaling au-
tonomous robots towards more advanced everyday manip-
ulation tasks.
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