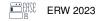


Institute for Artificial Intelligence University Bremen

EU Robotics Week 2023

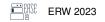
Robot Control in CRAM

Arthur Niedźwiecki November 23th, 2023



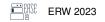
Into the cloud

How to set up a system fast?



Tutorial: Robot Control in CRAM

Install Linux



Tutorial: Robot Control in CRAM

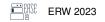
- Install Linux
- Set up SSH and GitHub

- Install Linux
- Set up SSH and GitHub
- Install Robot Operating System (ROS)

. 0

- Install Linux
- Set up SSH and GitHub
- Install Robot Operating System (ROS) /
- Install this...

- Install Linux
- Set up SSH and GitHub
- Install Robot Operating System (ROS)
- Install this...
- Install that...



• Requires specific operating system

- Requires specific operating system
- Collides with existing software

- Requires specific operating system
- Collides with existing software
- Complex and fragile setup takes time

- Requires specific operating system
- Collides with existing software
- Complex and fragile setup takes time
- Documentation has low priority

Into the cloud - Virtualization

How can I make my platform easier accessible?

Available courses

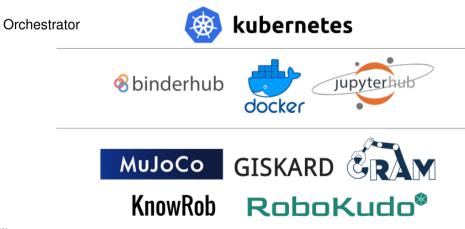
ERW 2023

Available courses

ERW 2023

Into the cloud - Server-side Architecture

Applications


Into the cloud - Server-side Architecture

MuJoCo GISKARD CROCKUDO

Into the cloud - Server-side Architecture

Agenda

Abstract Machine

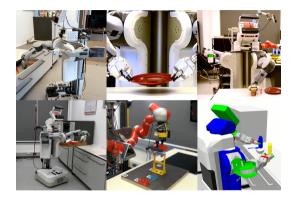
2 CRAM Plan Executive

Primitives Parameters Designators

3 Tutorials


Agenda

1 Abstract Machine


2 CRAM Plan Executive

Primitives Parameters Designators

3 Tutorials

Motivation

One plan to accomplish all variations of fetch and place:

• different objects, environments, robot platforms, applications.

Abstract Machines in Computer Science

Adapted from Pedro Domingos: "What's Missing in AI: the Interface Layer"

Field	Interface Layer	Below the Layer	Above the Layer
Operating Systems	virtual machines	hardware	software
Programming	high-level	compilers,	programming
systems	languages	optimizers,	
Databases	relational model	query optimization, db design, transaction mgmt	enterprise applications

Abstract Machines in Computer Science

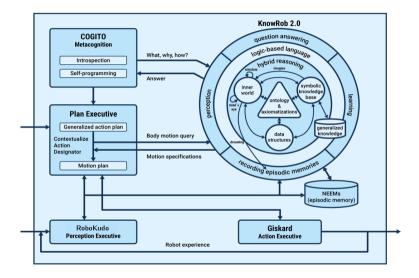
Adapted from Pedro Domingos: "What's Missing in AI: the Interface Layer"

Field	Interface Layer	Below the Layer	Above the Layer
Operating Systems	virtual machines	hardware	software
Programming	high-level	compilers,	programming
systems	languages	optimizers,	
Databases	relational model	query optimization, db design, transaction mgmt	enterprise applications
Personal robotics	CRAM : Cognitive Robot Abstract Ma- chine	grounding in robot, AI tools, the nuts and bolts of intelligent robotics,	robot application pro- gramming

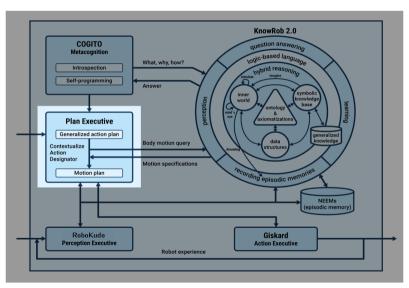
Raise the conceptual level at which service and personal robot applications are programmed!

Agenda

Abstract Machine

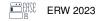

2 CRAM Plan Executive

Primitives Parameters Designators



CRAM 2.0 system

CRAM 2.0 system - Plan Executive



Challenges Tackled by the Plan Executive

- 1 Define which actions to execute to achieve the goal.
- 2 Infer which parameters to use for each action.
- Onitor task execution and react to failures.

Primitives: Motions and Percepts

Primitives: Motions and Percepts

Primitives of Mobile Pick and Place for PR2-like Robots

Primitive	Description
moving-base	Move the base to the target pose.
moving-arm	Move the joints of the arm / arms to the target configuration
	in joint, cartesian or constraint space.
moving-finger	Move the joint of the hand / hands to the target joint position.
gripping	Close the hand / hands to grasp an object.
moving-torso	Move the torso joint to the target joint position.
moving-neck	Move the neck to the target configuration or to direct the
	camera gaze to a target pose.
detecting	Detect the described object in the environment and update
	the internal world state with the acquired information.
monitoring-joint-states	Monitor if the joint positions of robot body parts exceed the given threshold.

Parameters of Motion and Perception Primitives

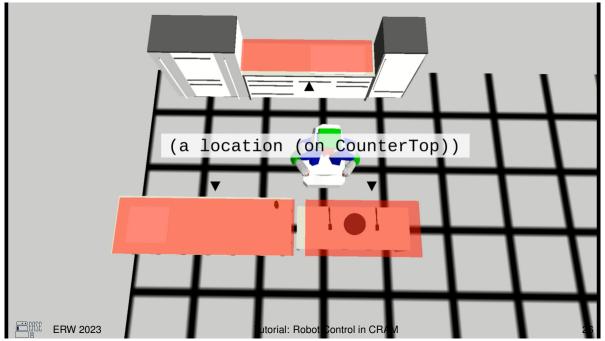
Primitive	Parameters
moving-base	goal_pose,, speed,
moving-arm	goal_pose_for_hand, goal_positions, collisions,
moving-finger	goal_position
gripping	hand, grasping_force, object_properties,
moving-torso	goal_position,
moving-neck	goal_positions, goal_coordinate_to_look_at,
detecting	object_description,
monitoring-joints	joint_name, joint_value, monitoring_function,

Calculating parameter values that maximize success probability: heuristics, learning from experience, imitation learning, ask a human

Choice of Parameter Values is Crucial For Success

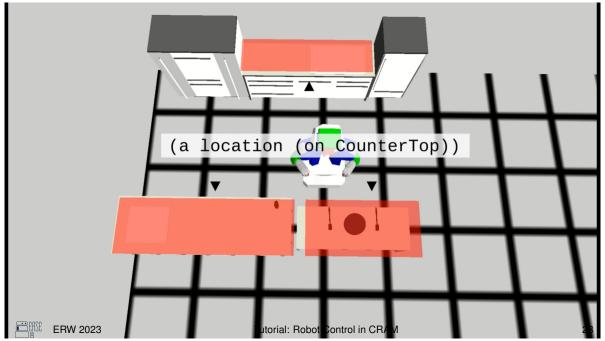
• Often very many possible values to choose from

Example: from which side and with which hand to grasp?

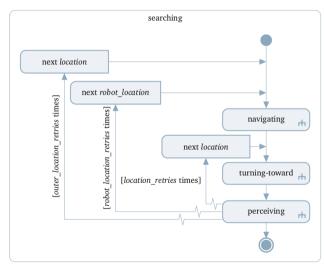


- Effects can be:
 - immediate
 - short-term
 - Iong-term

Designators


Symbolic entity descriptions

```
on-counter-location:
(a location
    (on CounterTop))
```

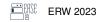

container-object:

```
(an object
  (type ContainerBottle)
  (at on-counter-location))
```

```
picking-up-action:
(an action
    (type PickingUp)
    (theme (some stuff (type PancakeMix))
        (object-acted-on container-object))
        ERW 2023
        Tutorial: Robot Control in CRAM
```

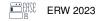

Action Designators: Searching

Combining primitives into high-level actions


Agenda

Abstract Machine

2 CRAM Plan Executive


Primitives Parameters Designators

3 Tutorials

Robot Control with PyCRAM

http://cram-system.org/

