Fall School 2023 - Day 1

Robot Control with PyCRAM

Arthur Niedzwiecki, Jonas Dech Institute for Artificial Intelligence University Bremen

September 11, 2023

Demonstration

- 1. Abstract Machine
- 2. CRAM Plan Executive Primitives Parameters Designators
- 3. Tutorials

1. Abstract Machine

2. CRAM Plan Executive Primitives Parameters Designators

3. Tutorials

Motivation

One plan to accomplish all variations of fetch and place:

different objects, environments, robot platforms, applications.

Abstract Machines in Computer Science

Adapted from Pedro Domingos: "What's Missing in AI: the Interface Layer"

Field	Interface Layer	Below the Layer	Above the Layer
Operating Systems	virtual machines	hardware	software
Programming	high-level	compilers,	programming
systems	languages	optimizers,	
Databases	relational model	query optimization, db	enterprise
		design,	applications
		transaction mgmt	

Abstract Machines in Computer Science

Adapted from Pedro Domingos: "What's Missing in AI: the Interface Layer"

Field	Interface Layer	Below the Layer	Above the Layer
Operating Systems	virtual machines	hardware	software
Programming	high-level	compilers,	programming
systems	languages	optimizers,	
Databases	relational model	query optimization, db	enterprise
		design,	applications
		transaction mgmt	
Personal robotics	CRAM	grounding in robot, AI	robot application pro-
		tools, the nuts and bolts	gramming
		of intelligent robotics,	

Raise the conceptual level at which service and personal robot applications are programmed!

1. Abstract Machine

2. CRAM Plan Executive Primitives Parameters Designators

3. Tutorials

CRAM General Overview

The CRAM 2.0 system.

CRAM Plan Executive

Challenges Tackled by the Plan Executive

- 1. Define which actions to execute to achieve the goal.
- 2. Infer which parameters to use for each action.
- 3. Monitor task execution and react to failures.

Primitives: Motions and Percepts

Primitives of Mobile Pick and Place for PR2-like Robots

Primitive	Description	
moving-base	Move the base to the target pose.	
moving-arm	Move the joints of the arm / arms to the target configuration in	
	joint, cartesian or constraint space.	
moving-finger	Move the joint of the hand $/$ hands to the target joint position.	
gripping	Close the hand $/$ hands to grasp an object.	
moving-torso	Move the torso joint to the target joint position.	
moving-neck	Move the neck to the target configuration or to direct the camera	
	gaze to a target pose.	
detecting	Detect the described object in the environment and update the	
	internal world state with the acquired information.	
monitoring-joint-states	Monitor if the joint positions of robot body parts exceed the given	
	threshold.	

Parameters of Motion and Perception Primitives

Primitive	Parameters
moving-base	goal_pose,, speed,
moving-arm	goal_pose_for_hand, goal_positions, collisions,
moving-finger	goal_position
gripping	hand, grasping_force, object_properties,
moving-torso	goal_position,
moving-neck	goal_positions, goal_coordinate_to_look_at,
detecting	object_description,
monitoring-joints	joint_name, joint_value, monitoring_function,

Calculating parameter values that maximize success probability: heuristics, learning from experience, imitation learning, ask a human

Choice of Parameter Values is Crucial For Success

 Often very many possible values to choose from

Example: from which side and with which hand to grasp?

- Effects can be:
 - immediate
 - short-term
 - long-term

CRAM Plan Executive

Tutorials

Location Designators

Finding the right location.

Action Designators: Searching

Combining primitives into high-level actions

CRAM Plan Executive

1. Abstract Machine

2. CRAM Plan Executive Primitives Parameters Designators

3. Tutorials

Monday: Robot Control with PyCRAM

http://cram-system.org/tutorials/

