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Abstract

Action planning for autonomous robots that are supposed to perform various

complex actions in real environments, such as human households, is a difficult

task. Traditional symbolic task planners can be successfully used to find a course

of actions to achieve the desired goal. However, it is hard for them to infer the

quantitative parameters of actions, such as put down locations for manipulated

objects. Therefore, it is sensible to combine qualitative and quantitative reasoning

approaches. One of the systems that does this is Cognitive Robot Abstract Ma-

chine (CRAM) and it was used in this work. This thesis describes an approach to

translate symbolic spatial descriptions into geometric parameters, which should

then be used in low-level robot actions. The novelty of the method is that it uti-

lizes the generative model of CRAM for resolving qualitative spatial descriptions,

that is a number of solution candidates are generated based on a certain sampling

mechanism, after which they are validated to conform with the execution context.

This model is very general and enables working with different types of robot ac-

tions described with various symbolically represented geometric parameters. The

approach was successfully evaluated in a scenario of autonomous table setting.
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Zusammenfassung

Aktionsplanung für autonome Roboter, die verschiedene komplexe Handlun-

gen in einer realen Umgebung, wie einem menschlichen Haushalt, ausführen sollen,

ist eine schwierige Aufgabe. Die traditionellen symbolischen Aktionsplaner können

erfolgreich eingesetzt werden, um den passenden Plan, der zum gewünschten Ziel

führt, zu finden. Innerhalb dieser Aktionsplaner ist es aber schwer, die quanti-

tativen Parameter der Aktionen, wie z.B. die “put down locations” für manip-

ulierende Objekte, auszurechnen. Daher ist es sinnvoll die Ansätze für qualita-

tive und quantitative Argumentation zu kombinieren. Eines der Systeme, das dies

leistet, ist Cognitive Robot Abstract Machine (CRAM), das für die Zwecke dieser

Masterarbeit verwendet wurde. Die Arbeit beschreibt einen Ansatz zum Überset-

zen der symbolischen räumlichen Beschreibungen in die geometrische Parameter,

welche innerhalb der Low-Level-Aktionen der Roboter verwendet werden sollen.

Die Neuerung des hier vorgestellten Ansatzes ist, dass es die generativen Modelle

von CRAM zum Auflösen der qualitativen räumlichen Beschreibungen verwendet

werden. Das heißt dass eine Anzahl von Lösungen wird auf der Grundlage eines

bestimmten Probenahmemechanismus vorgeschlagen, wonach sie entsprechend

dem Ausführungskontext validiert werden. Dieses Modell ist sehr allgemein und

ermöglicht das Beschreiben der verschiedenen Arten von Roboteraktionen mit

verschiedenen symbolisch dargestellten geometrischen Parametern. Der Ansatz

wurde erfolgreich in einem Szenario für das autonome Decken eines Tisches aus-

gewertet.
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Part I.

Introduction
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1. Objective

Robotics research nowadays has come close to creating autonomous robots that

could perform manipulation activities to assist humans in household environ-

ments, such as pick and place objects, set a table, clean up, perform cooking tasks

etc. There is a number of robots that can already perform such tasks, for example,

the robotic vacuum cleaners or, as have been shown in a number of demos, robots

pairing socks [20] or making pancakes [3]. However, these tasks are either very

simple or well specified, including well known working environments. Whereas,

being able to perform wider scope of activities in real human households involves

carrying out tasks of higher complexity in the unpredictably changing environ-

ment. Moreover, the specifications of tasks are usually incomplete and vague. For

example, if the robot gets a task to set a table, it needs to have many different

types of knowledge to be able to perform it: which low-level actions should be

performed to achieve the goal, in which order, which types of objects need to be

used and where they can be found, what the desired positions are, what the tra-

jectories for the arms and the robot base are, which grasps can be applied to pick

up objects etc. In addition, the robot should also have information about its envi-

ronment, such as where the table and the other furniture is. It should also have

common sense knowledge about its environment and applicable physics laws in it

in order to manipulate objects the right way.

There have been many solutions proposed to some of the subproblems listed.

This work concentrates on spatial requirements and limitations of task objects and

the robot or simply, it tackles the question, where exactly to put objects and po-
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1. Objective

Figure 1.1.: PR2 in real human environment and its geometric representation.

sition the robot in order to achieve desired goals, thereby showing good perfor-

mance. Knowing how to act the right way is as important as knowing exactly what

actions to perform and in which order. The traditional approach to planning (i.e.

finding the course of action that would lead to the desired goals) is to use symbolic

reasoning [17]. Thus, based on the goal state and using a library of low-level plans,

the symbolic planner performs logical inference to find the sequence of actions.

However, symbolic planning cannot infer how to perform an action (e.g. where

exactly to put an object during a put-down task execution), it only says which ac-

tions to perform. Therefore, it is also necessary to search for good parameters of

robot’s actions considering the given environment. They can, of course, be cho-

sen randomly, however, bad parameters can lead to a failure in execution, while

a good set of parameters can highly optimize the performance of plan execution.

As purely symbolic reasoning systems have limited possibilities for computing

quantitative parameters, it is necessary to combine qualitative reasoning with the

quantitative one.

It is not that obvious how much influence correct positioning of objects has on

performance and quality of execution of manipulation tasks. Humans performing

everyday manipulation tasks find the correct parameters of their actions instinc-
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tively. For example, they tend not to put easily breakable objects at the edge of a

table. Or they try to place certain objects in a way that they do not hinder manipu-

lation of other objects, for example, it is not efficient to put a coffee mug right next

to a computer mouse if the mouse is supposed to be used shortly afterwards, or to

put a big package in front of the screen that the person is going to look at. Robots,

however, have no knowledge about this and for them finding the correct positions

involves intense computational efforts.

The reasoning system described in this thesis generates those poses. It takes

symbolic abstract specifications of locations and finds solutions that suit the spec-

ifications the best under a certain set of constraints. The location specifications are

represented as lists of key-value pairs, e.g. ((on table) (for bowl)). An exam-

ple set of constraints is reachable(bowl, robot), visible(bowl, robot).

The solutions are found based on an accurate geometric representation of the world

(as shown on Figure 1.1) and specialized inference methods, such as robot inverse

kinematics solver based methods for inferring reachability. The system differenti-

ates between better and worse solutions with respect to the expected performance

of the execution of the plan where these solutions will be used. It has a genera-

tive model of finding solutions: first a number of solutions is generated, then they

are checked against the constraints – the explicit ones and the intrinsic constraints

from common sense knowledge and physics laws1. If the constraints are satisfied,

the generated pose is proposed as a solution. For the previous example with the

bowl the solution candidates will be generated based on the relations given in the

symbolic description, and then it will be checked if the bowl positioned at the pro-

posed pose is reachable and visible for the robot or not. It will also be checked if

the position is stable with respect to physics laws. Using a lightweight simulation

mechanism it can also be checked if the solution is good with respect to future ac-

tions. For example, it can be checked if the bowl at the chosen put down location

1The knowledge about physics laws comes from the Bullet physics engine: http://

bulletphysics.org
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1. Objective

will hinder the robot substantially during the subsequent manipulation tasks.

The main work performed in scope of this thesis was to extend the system de-

scribed above to enable inferring locations based on spatial relation descriptions,

that is it teaches the robot what means “left-of”, “behind”, “far” etc. It introduces

a novel approach to accurately representing geometric scenes by means of qualita-

tive spatial relations that utilizes the advantages of the generative model described

above. The system works as following: for each location description a 2D costmap

is generated over the whole domain of possible positions, that is if the robot is

working in the kitchen, the created costmap associates, based on an objective func-

tion, with each coordinate of the kitchen (only in 2D and up to some resolution)

a value. The objective function represents, to which extent a certain position is

suitable for the specific location description. If the description is (on table), the

costmap will assign the maximum values to positions on the table, and minimum

values elsewhere. The costmap is then used to sample solutions: the higher the

value the coordinate has in the costmap, the more likely it is to be picked as a solu-

tion. The system does not rely on the generative model completely: the latter only

guides the sampling mechanism by preferring some samples to others. This is im-

portant, because it is sometimes difficult to state a correct objective function for a

certain location description, and it is hard to find an optimal solution for any func-

tion in general, so the system does not search for the optimal solution. Instead,

it tries to find a good enough one, which satisfies the required constraints. The

constraints are checked in the validation step and only for the sampled solution

candidates. Using this approach, combining different descriptions comes down

to combining the costmaps, which is done by simple multiplication of the values

corresponding to the same position and normalizing the results in the end.

The example context, where this approach is tested, is the scenario of the robot

autonomously setting a table. The robot finds the objects it needs for table setting

on the kitchen counter and puts them at correct positions on the table. An example

description of the task the robot gets is “put a knife to the right of plate-2 in

6



table setting context”. The robot then searches for an object of type knife, finds a

position near the plate-2 based on the description satisfying the constraints (e.g.

the knife should not be colliding with the plate or other knives already placed

near it) and places the knife at that position. The system has different definitions

for each relation depending on the object, for which the pose is generated and the

context of the action: a pose for a knife placed near a plate in the table setting

context should be different from the position for a bowl placed near a plate in the

“clear the table” context.

The robot can either perform those actions in a simulation mode to reason if the

pose is good with respect to future actions, or actually execute them in real world

based on the results of the reasoning. The reasoning system is a part of CRAM

– the Cognitive Robot Abstract Machine [4] – which is a lightweight robot con-

trol software written in Common Lisp. It uses knowledge processing, symbolic

action planning and specialized parameter inference mechanisms in the robot con-

trol plans. It is designed to be flexible and efficient, in the sense that it generates

the parameters and courses of actions adapting to its environment and checks if

the solutions are efficient based on fast simulation. An emphasis is put on compu-

tational efficiency: being lightweight enables CRAM to perform all the reasoning

online during the execution of tasks by the robot in real world.
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2. Related Work

There are many other systems where symbolic and geometric planning have been

combined. For example, in [6] the planner considers both geometric and symbolic

constraints, which enables it to not only produce sequences of actions but also

their parameters, including the locations of the robots and objects and manipula-

tion and navigation trajectories. Like in CRAM, the reasoning here is also based

on an internal 3D representation of the world, consisting of poses of all the objects

and current configurations of the robots in the world, which enables to perform

reachability reasoning. The belief state, on which the reasoning is performed, is

then the combination of symbolic and geometric states. To decrease the dimen-

sionality of the search space a generative model is used, that is, first calculations

are performed in certain degrees of freedom (DOF), for instance, the three DOFs

of the robot base, and then the generated solutions are validated by taking into

account the remaining DOFs.

In contrast to CRAM, this system is highly concentrated on trajectory planning,

whereas CRAM has a very general approach and implements not only reachability,

but also visibility, stability and spatial reasoning, and can easily be scaled with

other concepts due to the costmap mechanism. The representation of the world in

CRAM is also more accurate, as it is based on a physics engine.

Another similar approach to planning is presented in [14], where symbolic, geo-

metric and differential constraints based reasoning is used for finding collision-free

and dynamically feasible trajectories that satisfy high-level constraints. It, again,

combines action planning with sampling based motion planing. The symbolic

9



2. Related Work

planner is used to simplify the search space, which is represented as a second-order

dynamical system. This approach uses symbolic action planning to guide the sam-

pling mechanism, so here the motion planner queries the action planner, which

makes the planning highly specialized on trajectory generation solely. Whereas in

CRAM it is the other way around, so the planning can be applied to very different

tasks.

The system in [10] also integrates task and motion planning, in that it uses geo-

metric suggesters, such as simplified grasp or path planners, to infer, which actions

and changes in the environment are necessary to achieve the desired goal. While

this system gives promising results in the area of high-level planning, the geomet-

ric constraints are used here to improve the symbolic reasoning, so the system does

not provide any means for inferring parameters of actions.

In CRAM the parameters, as mentioned before, are described symbolically and

when a certain action is executed on the robot they are inferred using the reason-

ing mechanisms. One important way of describing the parameters is by means

of spatial relations, and CRAM can infer geometric locations from those abstract

descriptions, which none of the planning systems described above is capable of.

This is required, for example, to be able to understand plans written as natural

language instructions extracted from the Internet.

There has been a vast research done in the field related to spatial relations, how-

ever, the most work done up to now has led towards representing existing geo-

metric relations with logical expressions, i.e. given two objects find the qualitative

representation of their spatial relation [9], [1], [2]. This information can then be

used to perform logical reasoning. The geometric reasoning system for a robot

used in CRAM, however, has the inverse problem: having an abstract description

of the relation, to find the poses that satisfy this relation. There have been a number

of approaches to deal with this issue as well, one of them based on mathematical

models using sets theory, as described in [5]. In this approach a set of geometric

positions is defined, where a certain constraint is satisfied, and in order to find

10



a set where more than one constraint is satisfied, all the corresponding sets are

combined using a conjunctive, disjunctive or compromise operators.

The representation used in the system described in this thesis is somewhat sim-

ilar, however, having the requirement to be able to work with all the possible

various location specifications (spatial relations, reachability, visibility etc.), it is

slightly simpler and more general. In addition, constraint satisfiability is checked

in the validation step, not during the generation of initial solutions, which, as it

is shown in Subsection 7.2.2, gives a substantial increase in efficiency if the con-

straints are non-trivial.
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3. Structure Overview

The thesis proceeds as following: in the second part an overview of background

knowledge necessary to understand the rest of the thesis is presented. In Chapter

4 a brief introduction to Lisp is given together with a demonstration of some of its

powerful features, and Chapter 5 explains the working principle of Prolog and its

implementation in CRAM.

The third part introduces CRAM itself and examines its mechanisms of resolving

symbolic parameter descriptions using the combination of qualitative and quan-

titative reasoning. Chapter 6 gives a general overview of the system, in Chapter

7 the symbolic descriptions of parameters are explained, Chapter 8 considers the

internal representation of the world that CRAM uses for reasoning, and Chapter 9

gives an insight into the generative model of designator resolution.

The fourth part of the thesis explains in detail the mechanism of translating qual-

itative spatial scene descriptions into their corresponding geometric parameters.

Chapter 10 discusses the mechanism implementation, and Chapter 11 presents the

results of experiments performed using the mechanism.

In the last part, the final remarks are made. Chapter 12 summarizes the major

results of this work, and the outlook for the future work is given in Chapter 13.

13
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4. Lisp

Lisp is a family of programming languages, which was inspired by the lambda

calculus [7] and implements many of the elements of the functional programming

paradigm. The paradigm is called functional because it treats computation as eval-

uation of mathematical functions. Thus, the functions in the code should return the

results of their calculations but not change the state of the program (e.g. change the

value of its arguments or that of a global variable) or have an observable interac-

tion with the outside world (e.g. print out data or raise an exception). In addition,

the execution of a function cannot depend on the state of the program or the input

from I/O devices, i.e. all the necessary variables should be passed as arguments.

Such functions are called pure functions and are said to have no side effects. In this

setting, it can be therefore assumed that at any point in the program a function will

always return the same result if the argument values are the same. This assump-

tion opens up many possibilities, e.g. it makes it easier to parallelize the execution

of the program and perform different optimizations.

There are more than 20 known dialects of Lisp and the two major ones nowadays

are Common Lisp and Scheme. CRAM is written in Common Lisp, which is an

ANSI standardized dialect with a number of existing implementations, including

the open source SBCL (Steel Bank Common Lisp) compiler.

Please note that Common Lisp is not a purely functional language and it does

not require all of the functions of the program to be pure.

17



4. Lisp

4.1. Higher-Order Functions

A function is called a higher-order function if it can have other functions as an input

argument or return value. A standard example is a general sorting function, which

takes as input a predicate that compares two elements of the list it wants to sort.

For example, in C it is the function qsort:

void qsor t ( void * a r r a y t o s o r t , s i z e t num elems ,

s i z e t e lem size ,

i n t ( compar ) ( const void * , const void * ) ) ;

where ∗compar is a pointer to the comparison function. Similarly, in Python the

function sorted takes as input another function cmp:

sor ted ( i t e r a b l e [ , cmp[ , key [ , reverse ] ] ] )

If now, for example, the order of sorting (descending vs. ascending) is decided

by user input, we can write another function, get cmp, which, depending on what

the user typed in, returns a pointer to the correct comparison function that we can

directly plug into the call to the sort method. As we can see, the get cmp here is

also a higher-order function.

The concept of higher-order functions is a part of the functional programming

paradigm and all the languages implementing this paradigm support higher-order

functions. An interesting example of higher-order functions that are extensively

used in functional programming are map and reduce. map is a primitive that

takes as input a one-argument function and a sequence and returns another se-

quence, where each element corresponds to the result of applying the function to

the corresponding element of the input sequence:

(map ’ l i s t # ’ sqr t ’ ( 4 9 2 5 ) )}

returns (2.0 3.0 5.0), where ’list is the type of the return value (it can also

be ’string etc.).

18



4.2. Lambda Functions

Reduce takes a two-argument function and a list as input and applies the func-

tion first to the first two elements of the list, then to the returned value and the

third element, and so on:

( reduce # ’+ ’ ( 2 6 1 ) )}

returns 9 ( (2 + 6) + 1 ).

The idea of map and reduce originated in functional programming languages

but many other languages adopted them since then and included into the list of

their built-in functions. Google’s programming model for processing large data

sets called MapReduce1 was also inspired by those primitives.

4.2. Lambda Functions

Sometimes the function, which is an argument or a return value to the higher-

order function, is used only once in the code and nowhere else. For example, let

us assume that we need a function to sort a list of strings with respect to their

third characters. The Common Lisp primitive sort2 will do the job for us. The

only thing we need to provide it with is the predicate that compares two strings

of the list in the appropriate for our task way. An example implementation of the

predicate could be:

( defun compare−by−th ird−char−p ( some−s t r i n g some−other−s t r i n g )

( char< ( char some−s t r i n g 2)

( char some−other−s t r i n g 2 ) ) )

where char retrieves a character from a string (please note, that in Common Lisp

the indices start from 0) and char< is the equivalent of “¡” for characters.

Using this predicate we could then white the sorting function like the following:

( defun sor t−by−th ird−c h a r a c t e r ( l i s t )

1http://research.google.com/archive/mapreduce.html
2http://www.lispworks.com/documentation/HyperSpec/Body/f_sort_.htm
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4. Lisp

( s o r t l i s t # ’ compare−by−th ird−char−p ) )

and call it like this:

( sor t−by−th ird−c h a r a c t e r

’ ( ” J . McCarthy” ”G. S t e e l e ” ”S . R u s s e l l ” ) )

which would result in:

(” J . McCarthy” ”S . R u s s e l l ” ”G. S t e e l e ” )

However, the predicate compare-by-third-char-p is only used in the

sort-by-third-character function and the rest of the program would most

likely access it only through that function. Therefore, instead of declaring the pred-

icate separately and giving it a name we declare it right on the spot where it is used,

utilizing the mechanism of anonymous functions of the functional programming

paradigm:

( defun sor t−by−th ird−c h a r a c t e r ( l i s t )

( s o r t l i s t ( lambda ( some−s t r i n g some−other−s t r i n g )

( char< ( char some−s t r i n g 2)

( char some−other−s t r i n g 2 ) ) ) ) )

In Lisp anonymous functions are called lambda functions, the name originating

from lambda calculus.

A lambda function, just as any other function, can access the local variables from

its lexical scope during its calculations, as well as assign new values to them. How-

ever, for a lambda function these bindings to the variables persist between different

calls. Therefore, it is possible to perform calculations on the same variable using

the corresponding lambda function from different parts of the code that have ac-

cess to it. The lambda functions that contain references to the variables from their

lexical scope are called closures. They are typically used for implementing call-

backs. The advantage of closures over, e.g. function pointers, is that due to the

20



4.3. Currying

variable bindings a closure has its own state, which is maintained between differ-

ent calls.

4.3. Currying

Assume we have a function which takes as parameters two objects and performs

collision detection on them. To do that it calculates the axis-aligned bounding

boxes of the objects and then checks if the resulting cubes intersect:

( defun c o l l i d i n g−p ( o b j e c t−1 o b j e c t −2)

( l e t ( ( aabb−1 ( get−aabb o b j e c t −1))

( aabb−2 ( get−aabb o b j e c t −2) ) )

( i n t e r s e c t−p aabb−1 aabb−2) ) )

We would like to use this function to check if the object plate is in collision

with some other object, namely the objects glass, fork, spoon and bowl:

(map ’ l i s t # ’ c o l l i d i n g−p

’ ( p l a t e p l a t e p l a t e p l a t e ) ’ ( g l a s s fork spoon bowl )

As colliding-p is a two-argument function we need to provide map with two

lists: one with elements for the first argument of colliding-p and another one

for the second argument values. If in our setting plate is colliding only with

fork the result will be: (NIL T NIL NIL).

Notice that while performing this mapping the bounding box of the plate is

calculated all over again. It would be nice if we could fix the first argument of

colliding-p to plate and do all the preprocessing for it before applying the

second argument. This is called currying / partial application. Common Lisp does

not have a built-in function for this, therefore we use a function from an external

library alexandria:

(map ’ l i s t
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( a lexandr ia : curry # ’ c o l l i d i n g−p ’ p l a t e )

’ ( g l a s s fork spoon bowl ) )

The function curry returns another function (a closure), which now accepts

only one parameter – object-2 – and object-1 is bound to plate. In addition

to better writing style, currying can also help to avoid calculating the same things

many times with the prerequisite that the compiler used for execution is smart

enough.

Coming back to the example from the previous section about lambda functions,

we can show that it is possible to write our sorting function in two lines using

currying:

( defun sor t−by−th ird−c h a r a c t e r ( l i s t )

( s o r t l i s t # ’ char< : key ( a lexandr ia : rcurry # ’ e l t 2 ) )

4.4. Recursions

Extensive usage of recursions is another distinctive feature of functional program-

ming, where it is the main way to accomplish iteration, as opposed to loops. Re-

cursion may become relatively inefficient because it requires to perform multiple

function calls, i.e. multiple operations on the stack accompanied by its growth.

However, compilers for functional programming languages are usually highly op-

timized for recursions, which makes them perform as fast as looping. One example

is the tail recursion optimization. If the recursive call is the last operation in the

caller function then the result of the call will also be the result of the caller function.

This means that all the local variables of the caller function have already been used

for necessary calculations and there is no need to keep them any longer. So, instead

of creating a new stack frame for the recursive call, the old space is recycled and

overwritten by the new data. This gives a considerable increase in processing time

and memory consumption, especially if the recursive function is highly nested. In
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addition, with tail recursion optimization it is possible to create infinite recursion

loops, for example, for user input or event handling without causing stack over-

flow.

4.5. Lazy Evaluation

Sometimes in reasoning for robot plans a need arises to process infinite data struc-

tures. For example, let us assume that the robot wants to put a plate on a table and

the way the put down location is determined is just by taking a random position

within the bounds of the table. If the program does not keep track of already gen-

erated positions (and most likely it will not as there are very many – as many as

there are positions on the table up to a certain resolution) then if we ask for all put

down locations for the plate the answer will be an infinite list.

The way the infinite data structures are handled in CRAM is by utilizing the

concept of lazy / delayed evaluation, which is another typical element of the func-

tional programming paradigm, also coming from lambda calculus. One example

of using the lazy evaluation method is that an expression on the right-hand side of

a variable assignment is only evaluated when the variable from the left-hand side

is first used in the code. That is a := func(b) will not initiate a call to func until

a gets used for the first time somewhere else in the code.

Common Lisp does not provide any functionality for lazy evaluation, so CRAM

has its own little library for that. The central point of this library is the implemen-

tation of lazy lists, which are used to represent big or infinite-sized lists.

In order to create a lazy list it is required to provide a generator function, which

will generate the elements of the list, initial values of the variables, on which the

function depends, and the update rules of the variables. In general it looks like

this:

( lazy− l i s t ( ( var iab le−1 var iab le−1− i n i t i a l −value )
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. . .

( var iab le−n var iab le−n− i n i t i a l −value ) )

( cont generator−funct ion−c a l l update−rule−for−var iab le−1

. . .

update−rule−for−var iab le−n ) )

The first time when an element of the list is requested:

• the generator function is called with the initial values of the variables (the

first element of the lazy list is the returned value of the generator function),

• the values of the variables are updated according to the given update rules.

On subsequent calls for new elements of the list the process will repeat with the

updated values of the variables.

Let us consider an example of how to create lazy lists: the function

random-number-sequence generates an infinite lazy list of random numbers

between the given bounds (lower-bound and upper-bound):

( defun random−number−sequence ( lower−bound upper−bound )

( lazy− l i s t ( )

( cont (+ lower−bound ( random (− upper−bound

lower−bound ) ) ) ) ) )

The generator function of this lazy list is:

(+ lower−bound ( random (− upper−bound lower−bound ) ) )

As we can see, all the parameters of the function are constant. Therefore, there

are no input variables and there is no need to specify initial values or update rules.

In contrast to the previous example, the following piece of code defines a func-

tion number-sequence that returns a lazy list that contains subsequent integers

from
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lower-bound to upper-bound, for which we need to keep track, which integer

is returned each time:

( defun number−sequence ( lower−bound upper−bound )

( lazy− l i s t ( ( i lower−bound ) )

(when (< i upper−bound )

( cont i (+ i 1 ) ) ) ) )

The update rule here is (+ i 1) and the generator function is identity. Please

note, that this lazy list is finite and it ends when i becomes equal to upper-bound.

In addition to means of creating and referencing lazy lists, CRAM provides a

number of tools to work with them: a function force-ll, which forces the list to

expand all its values, mapping and reducing functions specialized on lazy lists etc.

Lazy evaluation is not only used in CRAM for handling infinite data structures,

but it also supports the idea of the system being designed to be lightweight: ex-

pressions are being evaluated only at the moment when it is really needed.

4.6. Macros

Lisp has a Polish prefix notation, that is all the code expressions have the form of

lists (they are called s-expressions). For example, the expression (2 + 4) / 3 in

Lisp will be written as (/ (+ 2 4) 3). This means that all the expressions are

identical, which makes parsing the code simple and, therefore, reliable in the sense

that it is much harder to make mistakes during parsing in Lisp than in languages

with other more complex syntax. In addition, the name Lisp comes from “LISt

Processing”, which in some sense reflects the fact that the main data type of the

language is a list. So, the data and code are identical as well. Therefore, most of

the means that are used to manipulate data can also be used to edit and generate

code. All of these gives Lisp a very powerful means for metaprogramming due to

its extensive macros mechanism, which makes it easy to write new domain-specific
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languages embedded into Lisp.

To illustrate the usage of macros in Common Lisp let us consider the example of

the primitive loop3:

( loop f o r i in l i s t

when ( numberp i )

when ( f l o a t p i )

c o l l e c t i i n t o f l o a t−numbers

e l s e

c o l l e c t i i n t o other−numbers

e l s e

when ( symbolp i )

c o l l e c t i i n t o symbol− l i s t

e l s e

do ( e r r o r ”funny value in l i s t ˜ S , value ˜ S˜%” l i s t i )

f i n a l l y ( re turn ( values f l o a t−numbers other−numbers

symbol− l i s t ) ) )

If we perform this loop with the list equal to

(0 3 . 0 apple 4 5 9 . 8 orange banana )

it will sort the values in the list depending on their type:

( 3 . 0 9 . 8 ) , (0 4 5 ) , (APPLE ORANGE BANANA)

4.7. Packages

Common Lisp organizes code modules using packages. Each package has its own

namespace such that the programmer could use the same name for different func-

tions from different packages. The developer of a package can decide which sym-

3http://www.lispworks.com/documentation/HyperSpec/Body/m_loop.htm
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bols (function names, variables etc.) it wants to expose to the users of his pack-

age and which ones should not be accessible. In order to use code from a pack-

age it should be compiled and loaded. If package A uses functionality defined in

package B then B should be loaded before A. The loading process is either done

manually or using the Common Lisp building tool called ASDF (Another System

Definition Facility) [16]. It automatically compiles and loads in correct order the

packages for which dependencies are correctly specified in the build files. Multi-

ple dependency is allowed, as long as there are no loops in the dependency tree.

ASDF supports incremental compiling: it compiles only those files, that have been

changed since the last compilation.

4.8. SBCL

The Common Lisp compiler used for developing CRAM is SBCL 4. It translates the

Common Lisp code into native machine code, is written in Lisp and is free / open-

source5. It provides the programmers with declarations to improve the efficiency

of the code. This includes specification of optimization policies for the functions

(SBCL supports all the four ANSI optimization qualities: debug, safety, space

and speed), optional data type declarations (Common Lisp has dynamic typing),

debugger option specifications etc. It also has a garbage collector. In fact, the

concept of automatic garbage collection was first introduced by Lisp.

4.9. Why Lisp?

There is a number of reasons why Common Lisp was chosen as the language of

CRAM. They are discussed below.

4http://www.sbcl.org/manual/
5https://github.com/sbcl/sbcl
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Due to its powerful macros mechanism Lisp is known to be good for imple-

menting other domain-specific languages. This characteristic was extensively used

during the implementation of CRAM:

• A new reactive planning language CPL (CRAM Plan Language) was devel-

oped for CRAM. It is used for programming cognition-enabled control sys-

tems and is based on RPL [11].

• Using Lisp macros it is easier to automatically generate robot plans, as plans

are chunks of code and Lisp is good for generating code.

• In addition to the macros mechanism, Lisp is good for working with sym-

bolic data, as symbol is one of its built-in types. The combination of the

macro and symbol processing mechanisms makes Lisp perfect for writing

symbolic reasoning systems. CRAM has a custom Prolog interpreter written

in Lisp that can perform both logic reasoning and use specialized inference

methods for the cases when logical inference has a too large search space (it

is discussed in the next section).

In terms of efficiency Lisp is generally faster than many languages, such as

Python or Ruby, but, slower than, for example, C++ or Java 6. However, CRAM

runs on a robot in real-time and the robot usually has enough time to think about

its future actions while performing current actions: physical execution of actions

is in most cases slower than the computation. In addition, as mentioned before,

SBCL has many possibilities to improve code using the optimization declarations.

And also, the relatively low computational efficiency is partly compensated by the

software development efficiency due to the fact that programmers can implement

much functionality in a few lines of code.

Finally, the last but not the least reason for choosing Common Lisp is that it is a

very powerful and flexible language and is exciting to program with. In addition

6Based on the benchmarks from http://shootout.alioth.debian.org/.
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to supporting functional programming, it also has the advantages of the object-

oriented programming languages, as it supports such concepts, as classes, multi-

ple inheritance, function overloading etc. through Common Lisp Object System

(CLOS), which is its built in facility. It also supports hot swapping: it is possible

to make changes in the code and recompile it at runtime and the changes will im-

mediately take place. If a CLOS class is changed during execution all the class’

instances will adopt to the changes.
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Prolog is a logic programming language. It is mostly declarative but has some im-

perative programming features as well: it has a purely logical subset, which pro-

hibits side effects, plus a number of imperative features, such as a cut operator,

which can be used to alter the control flow of the program, and routines for per-

forming input/output operations, accessing the graphics card, using the network

etc. It was inspired by first-order logic (though it also has a number of predicates

from higher-order logic), so the program is represented in terms of relations. The

latter can be divided into two groups: rules and facts. Rules in Prolog are repre-

sented as following:

BigGoal :− Goal1 , . . . , Goaln .

which can be read as “BigGoal is true if Goal1 and ... and Goaln are true” or,

equivalently, “to prove BigGoal, prove Goal1 and ... and Goaln”. The left-hand

side of the rule is called head and the right-hand side - body. All the goals have a

form of predicates, which are boolean functions that have zero or more arguments.

The number of arguments is called the arity of the predicate, e.g. color(Object,

Color) is a 2-arity predicate.

The facts are predicates, which are always true, for example:

c o l o r ( sky , blue ) .

which is equivalent to the rule:

c o l o r ( sky , blue ) :− t rue .
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All the facts and rules known to the program build the knowledge database, to

which Prolog states queries in order to prove goals. To prove a goal means to find

correct assignments to all the variables in the goal that are unbound. For example,

if we have the relations describing some family tree, proving the goal

{mother ( diana , Child ) . }

with Child as an unbound variable and diana as constant, would give us a list

of Diana’s children if such exist, otherwise the goal would be proven to be false.

If both arguments of the predicate would be bound, proving it would just return

true or false.

Prolog is usually used for representing knowledge. It maintains a knowledge

database that we can query to get specific data. But, in contrast to traditional

databases, it can also infer knowledge that is not explicitly given in the knowledge

base.

5.1. CRAM Prolog

CRAM has its own custom written full featured Prolog interpreter, implemented in

Common Lisp. It is used in CRAM to perform logic-based inference, so the CRAM

programs written in Lisp send certain query statements to Prolog, which in its turn

returns as a result of its calculations a set of suitable for the statement parameter

assignments in a form of objects of Lisp datatypes, or tells if the statement is true

or false according to its knowledge. Its working principle is the same as that of

traditional Prolog interpreters, but it has additional support of lazy lists to deal

with data structures of infinite size that are to be returned to the Lisp code. The

syntax of CRAM Prolog is different from the traditional one in that it has the same

Polish notation as Lisp.

Let us consider a simple world where we only have a few furniture items, a

floor, a number of tableware objects, such as cups or bowls, and a robot, and try to
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Figure 5.1.: A simple world with a few furniture items, a floor, a mug and a bowl

standing on a table and a robot, which is in contact with the table.

use Prolog to perform reasoning on this world. One possible state of such a world,

which we will call visualized-world-state, is visualized in Figure 5.1. For

example, let us take the relation supported-by, which specifies if one object is

supported by another in a particular state of our world (e.g. on the figure a mug

on the table is supported by the table and the robot is supported by the floor). It

can be defined as following:

(<− ( supported−by ?world−s t a t e ? top ? bottom )

( c o n t a c t ?world−s t a t e ? top ? bottom )

( above ?world−s t a t e ? top ? bottom ) )

where the first inner s-expression (the first line) is the head of the rule, and the

other two – the body with an implicit logical and combining them. Each expression

starts with a symbol representing its name followed by its arguments. Symbols

starting with a question mark are variables.

If we now state the following goal:

( supported−by visua l ized−world−s t a t e ? supported−o b j e c t t a b l e )

Prolog should bind the variable ?supported-object to any object that is in con-

tact with and above the table in visualized-world-state, and a list with all
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the bindings (assignments) of ?supported-object should be returned. As can

be seen on the Figure 5.1, the orange mug, which we will call mug-1, and the green

bowl bowl-1 are standing on the table, so these two will be the valid bindings for

?supported-object.

CRAM Prolog, just as Prolog in general, uses an approach similar to depth-first

search to prove goals. The search tree for supported-by for the world state from

Figure 5.1 is presented in Figure 5.2. To build the tree, Prolog first puts the goal

itself as a root node. Then it expands the goal based on the body of the rule

(or rules) it is described with. In our case, the body consist of two predicates,

namely, contact and above, each of which is considered in turn. Prolog tries to

find variable bindings for all the predicates with unbound attributes. This pro-

cess is called unification. In this case, the only unbound variable is ?top aka

?supported-object. The other two variables ?world-state and ?bottom

are bound to visualized-world-state and table respectively.

The interpreter starts by trying to prove the predicate contact. For each pos-

sible variable assignment of the predicate it builds a node in the tree, and the

parent of these nodes is marked as a choice point. In our case, the predicate

contact gives three possible variable assignments for ?supported-object,

namely Robot, mug-1 and bowl-1, as those are the objects that are in contact

with table in visualized-world-state. Then it proceeds by expanding all

the predicates that are described by rules in a similar fashion until it reaches the

leaf nodes – the predicates with all the variables bound, i.e. facts. If it is impossible

to prove a certain predicate, that is it is impossible to find variable bindings that do

not contradict with the bindings from parent nodes of the tree or if the predicate

cannot be proven using the knowledge base of facts, it means that it was impossible

to find a solution on this particular branch of the tree and the algorithm backtracks

– goes up the tree until the closest choice point – and continues the depth-first

search. The algorithm can stop as soon as one solution for the goal is found that

satisfies all the constraints, i.e. all the variables on the branch of the tree from the
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FAIL

SUCCESS

?supp-obj =

mug-1

SUCCESS

?supp-obj =

bowl-1

(above v-w-s robot table) (above v-w-s mug-1 table) (above v-w-s bowl-1 table)

Choice Point

for

?supp-obj

?supp-obj = mug-1

?supp-obj = robot-1 ?supp-obj = bowl-1

(contact v-w-s ?supp-obj table)

(above v-w-s ?supp-obj table)

(contact v-w-s ?supp-obj table)

(supported-by v-w-s ?supp-obj table)

Figure 5.2.: Prolog search tree for a query (supported-by v-w-s ?supp-obj

table), where v-w-s denotes the visualized-world-state and

?supp-obj) is a shortened version of ?supporting-object.
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goal to the solution are correctly bound, or it can expand the whole search tree and

find all the valid solutions, which can in fact be of infinite number. In our example,

the left branch of the tree fails, as Robot is not above table, and the other two

branches result in corresponding bindings for the variable ?supported-object.

Thus, our Prolog predicate supported-by gives the following result:

( ( ( ? SUPPORTED−OBJECT . PLATE−1))

( ( ?SUPPORTED−OBJECT . PLATE−2) ) )

which is an associative list of valid variable bindings.

This mechanism of searching for valid parameters of predicates that satisfy cer-

tain constraints is a powerful tool that is used in CRAM to perform reasoning. Un-

fortunately, pure logical inference can only perform qualitative reasoning. How-

ever, as many of the parameters of robot plans are actually quantitative and sym-

bolic reasoning cannot be used for them, CRAM Prolog has means to combine

traditional logic reasoning with quantitative domain-specific inference methods

that can, for instance, be based on geometric calculations. It is used in CRAM for

finding valid parametrizations of actions, answering queries about the state of the

world and the relations of objects in it, finding the correct sequences of actions

required to achieve a certain goal etc.

As an example, let us come back to the predicate supported-by. In order to

prove it Prolog needs to consider two other predicates – above and contact. One

possible implementation of above is to keep a list of all the object pairs that satisfy

the above relation for every possible state of the world and use Prolog search based

on this knowledge. If the world contains many objects and we have many different

states of the world to reason about, the search space explodes.

A better approach would be to use a specialized inference method based on

geometric reasoning, as the above relation is actually a geometrical concept. Thus,

the predicate can be defined in the following way:

(<− ( above ?world−s t a t e ? obj−1−name ? obj−2−name)
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( o b j e c t−geometry ?world−s t a t e ? obj−1−name ? obj−1−geometry )

( o b j e c t−geometry ?world−s t a t e ? obj−2−name ? obj−2−geometry )

( l i s p−pred above−p ? obj−1−geometry ? obj−2−geometry ) )

where the predicate object-geometry relates names of objects to the informa-

tion about their geometry, including their shape and pose in the specified world

state. lisp-pred denotes that above-p is actually a Lisp function, which re-

turns a boolean value. One possible implementation of above-p is to find the

axis-aligned bounding boxes of the two objects and compare the bottom of one

box with the top of the other one. This solution is more intuitive and efficient for

complex worlds than the approach with pure Prolog that was proposed above,

which illustrates the advantage of specialized inference methods over logical in-

ference for some domains. The predicate contact can be solved in a similar way:

we can perform collision detection using, for instance, a game physics engine.

If the goal predicate is described through many rules, i.e. there are multiple

rules that have the same goal in their head part, Prolog considers each rule sep-

arately and the solutions from all the rules are concatenated. In this respect, the

useful feature of CRAM Prolog is that different rules can be declared in different

Lisp packages: some packages can have simple solutions and some – more com-

plex ones. To use certain solutions the packages in which they are implemented

should simply be loaded into SBCL. The solutions from all the loaded packages

are combined with each other. So, if for a certain task a lightweight solution is

sufficient, only the packages with simpler implementations should be loaded. For

instance, let us assume that there is a Lisp package for performing various cooking

tasks with the robot. For any of the tasks, it is always first checked if all the nec-

essary ingredients are at robot’s disposal by querying Prolog with the following

predicate:

( o b j e c t−at−disposa l current−world−s t a t e the−i n g r e d i e n t

? ingredient−l o c a t i o n )
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which should find correct bindings for ?ingredient-location if

the-ingredient can be found by the robot in current-world-state and

should fail otherwise. If the predicate fails for any of the ingredients, the cook-

ing cannot be performed. Let us assume that the default implementation is using

the camera of the robot to look around and try to detect the necessary object.

If now we want to extend the system to make the robot also open shelves and

cupboards and search for the object there, we need to create a Lisp package and

implement there a new definition of the predicate object-at-disposal, which

realizes this approach. If we now load this package together with the other ones,

even if the query to object-at-disposal will not be able to find any bindings

for ?object-position using the old implementation, Prolog will proceed with

the search using the new implementation, which may be successful. No changes

are required to be done in the old packages, loading the new package into SBCL is

sufficient to start using the new functionality.
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6. System Overview

CRAM is a planning and reasoning system written in Common Lisp, which incor-

porates Prolog based qualitative reasoning with specialized quantitative inference

methods. The robot plans are written in CPL – the CRAM Plan Language, which

is used for developing plans for mobile manipulation and AI based robot control.

It provides means for writing commands that can be executed in a reactive and

concurrent way. It represents goals, actions and failure descriptions using Pro-

log, which enables reasoning about the course of plan execution. The actions are

represented as symbolic rules used for updating the world states.

The symbolic planer uses a plan library and Prolog based inference to find the

course of actions necessary to achieve a specified goal. The parameters of actions

are represented using the so-called designators, which are symbolic key-value pairs

that are qualitative descriptions of the parameters. They are resolved by query-

ing the reasoning engine. Querying enables the system to perform calculations

only when they are actually indeed. So, using the concept of designators we can

represent the objects in the world, tasks, etc. in an abstract way, and ground the

representations at run-time when a specific designator is needed in order to per-

form an action.

The designators are symbolic representations of actions, objects or locations,

which are compiled into Prolog programs that are executed in order to resolve

them. If a designator represents a quantitative concept, specialized reasoning

mechanisms are used. For instance, location designators are resolved using an ac-

curate geometric representation of the world. The specialized methods of CRAM
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can perform visibility, stability, reasoning, as well as infer locations from spatial

relation descriptions.

CRAM uses a generative model to resolve designators, i.e. a number of pro-

posed solutions are generated and then validated to check if they are appropriate

in a particular environment state and action execution context.

In order to find if a designator solution is good with respect to future actions of

the robot, CRAM can perform a lightweight simulation, called temporal projection,

record the timeline of events that happened during it, and using behavioural flaw

specifications evaluate the quality of the solutions with respect to that flaws. For

example, a behavioural flaw can be the distance that the robot should drive during

the execution of a task or a number of broken mugs that are expected is a specific

designator solution is used to parametrize the plan.

The timelines of actions executed by the robot controlled by CRAM in the real

world are stored in a form of a so called execution trace, such that the robot could

then analyse its past actions and learn from experience [12].

Currently, the most of the functionality of CRAM for using it for real world

action execution is implemented for the PR2 robot1. However, it has a flexible

software architecture and can be easily extended to be used with other robots. For

each robot a specific set of functionalities should be implemented. In CRAM those

are grouped into so-called process modules, which include perception, navigation,

manipulation and pan-tilt unit control modules. Altogether they constitute the

executive of the robot. In order to use a certain executive it is only needed to load

the Lisp package / packages with the corresponding implementation and register

the process modules in the system. No changes in the system code is necessary.

CRAM is mainly written in Common Lisp and uses ROS as a middleware for

communication between its different modules, and also as a convenient software

development tool, e.g. to easily share code between different developers [15]. It is

1http://www.willowgarage.com/pages/pr2/overview

42

http://www.willowgarage.com/pages/pr2/overview


open-source2. As a software toolbox it is designed to satisfy the following require-

ments [4]:

• It should be lightweight to be able to run on a robot in real-time.

• It should be written in standardized languages to be easily used by other

developers in the community.

• It should have a flexible software architecture to make the extension with

additional modules easy.

2http://www.ros.org/wiki/tum-ros-pkg
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7. Designators

7.1. Concept

The whole system is based on the concept of designators, which are symbolic de-

scriptions of building blocks needed during execution of the robot plans in CRAM.

This enables to write the plans in an abstract way, e.g. a plan make-me-tea can be

described as “put a tea bag in a mug and pour hot water in that mug”. When the

plan is actually executed all the designators are resolved using robot’s environ-

ment, such that the mug from the plan would be grounded with an actual mug

from robot’s environment, which can be done using, for instance, robot’s percep-

tion. The action “pour” will then also be grounded to a specific motion of the

robot’s joints.

The designators are represented in plans as abstract symbolic descriptions in a

form of a list of designator properties (e.g. for a red cup it would be ((type cup)

(color red))) and are resolved at run-time and only when the program reaches

a point in the plan where there is an unresolved designator. If there exist different

methods to resolve the same designator, the system combines them, such that if

one method fails the solutions from the others would be used.

There are three types of designators in the system at the moment: action, location

and object designators. Resolving an action designator gives correct parametriza-

tions of actions to execute. If an action is about manipulation, resolving the des-

ignator could give a trajectory of the robot joints that can be then used to execute
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the action. For designators describing navigation actions, resolving gives the tra-

jectory for the robot base. Location designators are resolved into 3D poses, such

that when executing a plan “put a fork to the left of plate” the robot would know

exactly at which position and orientation it should put the fork with respect to

the plate. Object designators are usually resolved through robot’s perception: it

perceives the environment and creates in the belief state an instance of each per-

ceived object, which is then bound to a designator, if the symbolic description

corresponds to the properties of the object.

7.2. Implementation

A designator is represented in CRAM as a CLOS class with the following slots:

timestamp, description, parent, successor, effective and data. Here,

the description is the list of properties which give the abstract representation

of the designator. The result of resolving should go into the data slot of the corre-

sponding designator. Upon resolving the current system time gets assigned to the

timestamp slot and the effective tag gets assigned a true value to indicate

that this particular designator is grounded. The designators are read-only, so once

they become effective, the data slot cannot be changed any more. That way the

timestamp always denotes the time of resolving of the designator. When a new

up to date solution for a designator with the same symbolic description is needed,

the (next-solution desig) function is called, which creates a new designa-

tor with the same properties as desig has, but the data slot of the designator gets

assigned a new value as a result of resolution.

During the process of generation of the new designator object, the parent slot

of the new one gets assigned a pointer to the old designator and the successor of

the old one gets assigned a pointer to the new designator. Thereby, a chain of valid

grounded representations of the same abstract designator is generated where each

of them has a distinct timestamp with the generation time. In order to check if two
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effective designators were actually resolved the same way, they can be equate-ed.

This mechanism makes it possible to account for and keep track of the changes in

the environment.

The specific designators – action, location and object – are subclasses of

designator.

7.2.1. Action Designator

Resolving action designators is done with Prolog, namely the predicate

(action-desig desig ?goal). An example of such a predicate implemen-

tation is given in Listing 7.1. The resolving function leaves ?goal in the predicate

unbound, so Prolog binds it to the correct parametrization of the action includ-

ing the type of a manipulation task that desig designates. In our example it is

the action called “put-down” and the parameters are ?obj, ?loc, :right and

?obstacles. In case of a navigation action the goal would probably only con-

tain the position where we want to move the robot, as the goal position is the only

parameter needed in order to execute a navigation task.

Each Lisp package which deals with specific action designators is supposed to

implement the action-desig predicate. Prolog will then unify all the goals com-

ing from the different implementations inside ?goal in a form of a lazy list, which

will then be assigned by the resolving function to the solutions slot of the action

designator object. The first of these solutions gets assigned to the data slot of the

designator.

(<− ( ac t ion−desig ? desig ( put−down ? obj ? l o c : r i g h t

? o b s t a c l e s ) )

( t r a j e c t o r y−desig ? ? desig )

( desig−prop ? desig ( to put−down ) )

( desig−prop ? desig ( ob j ? ob j ) )

( desig−prop ? desig ( a t ? l o c ) )
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( o b s t a c l e s ? desig ? o b s t a c l e s ) )

Listing 7.1: Implementation of action-desig for a put-down manipulation

task.

What is done with the list of solutions, i.e. in our example how exactly the

put-down action is executed and how the parameters are used, is specified in the

corresponding parts of the system where the action designators are used, for ex-

ample, in the plans. The same goes to the implementation of the corresponding

action-desig predicate that we have in the listing. So the implementation of

the concept of designators, of course, only provides the protocol for their usage

and no specific implementations.

7.2.2. Location Designator

The way the location designators are resolved is by using the so called location

generator functions. Each of these functions gets as input the location designator

we want to resolve and gives back a lazy or a normal list of solutions. The solutions

will usually be poses in 3D but not necessarily, as location designator is a general

concept.

The system maintains a list of all the generators known to it and provides a

mechanism to register new ones. When a location designator needs to be resolved,

it is passed to all the generators and the results from them are collected together

in a lazy list of solutions. Each generator has a priority value assigned to it, so the

solutions from generators with smaller values are put at the beginning of the list.

The functions that generate infinite solutions should therefore be assigned highest

priority values, otherwise they will not give other functions a chance to generate

a solution. Of course, a generator does not need to be able to resolve any kind

of location designator with any combination of designator properties. Instead, it

should be specialized on one certain type of location designators and return nil

in case of others.
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Besides the location generators, the system also provides a way to discard the

generated solutions that are not applicable in the particular setting of robot’s en-

vironment. This validation is done using the list of location validation functions,

which get as input the designator and the solution given by the generators, which

is then either accepted or rejected. So the generated solutions are taken from the

lazy list one by one and passed to the validators. If a solution gets rejected the next

one on the list is tried out. There is a maximum number of retries (e.g. 200) after

which the system stops looking for more solutions and considers the designator

resolution to have failed.

The location generators are supposed to give more general solution candidates

for the designator resolution and the validators refine this solutions by rejecting

some of them. In order to understand which properties of the environment need

to be considered on the generator side, and which ones – during validation – let us

look at an example. We would like to resolve the following designator:

( des ignator l o c a t i o n ( ( l e f t −of plate −1) ) )

where plate-1 is an object from our belief state, the pose of which in the world

we know exactly. We would like to use the resolved pose as a put down location for

another object, e.g. a fork. The location generator for this designator would then

generate an infinite number of poses which all lie to the left of the plate in some

particular context. However, not all the locations are good. If there is already one

fork lying on the left of the plate we would not like to put the second fork on top

of it. Therefore, we use the location validator to reject all the poses which are in

collision with other objects. One could argue that the location generator could take

the other objects into account while generating the poses, however, the collision

check is rather expensive and there are many if not infinite number of solutions

that the location generator could give. Therefore, we only perform the check on

the validator side for a few generated solutions until we find a suitable one.

The lazy list of solutions from all the generators for a particular designator are
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kept in the data slot of the designator object.

7.2.3. Object Designator

For the object designators there is no definite mechanism of resolution. They are

supposed to be resolved externally, i.e. the data slot should be set from outside.

The information put into the data slot has to be of object-designator-data

type where the external module sets the pose and the identifier of the object that it

considers that the particular designator refers to. The object-designator-data

class can, of course, be extended with additional slots using the inheritance mech-

anism. An example of an external module to resolve a designator is the perception

of the robot.

7.2.4. Packaging

Whenever support for a new designator property needs to be added to the system,

the module which should be responsible for the property should declare it and

implement the functionality for resolving designators with such a property. How-

ever, different modules of the system, i.e. different Lisp packages, need to be able

to use the designator resolving functions defined in other packages. Moreover, it

should be possible to combine different implementations of the same designator

property. For example, let us assume that we want to resolve the designator

( des ignator l o c a t i o n ( ( l e f t −of plate −1) ( f o r fork ) ) ,

which means we would like to have a location to put down a fork that is to the left

of plate-1.

Assume that the package of the system, which is responsible for spatial relations,

returns for this designator the solutions as on the Figure 7.1 (left), where the red

color depicts locations directly to the left of the plate and the more the position

deviates from this direction the closer the color gets to purple on a hue color scale.
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This package is only responsible for resolving spatial relations properties and has

no distinction between different objects.

Now we load a different package, which has knowledge about correct object

placement in the context of table setting. This package would know that if a fork

is placed to the left of a plate then only the locations very close to the plate would

be suitable and all the locations far from it are wrong in the particular context.

Therefore, this package extends the definition of left-of from the spatial rela-

tions package and adds a distance criterion to it, as shown on Figure 7.1 (center):

the red color represents locations near plate. The solution space resulting from

combining both definitions is shown in Figure 7.1 (right).

Figure 7.1.: Different implementations of designator property left-of and their

combination.

In order for the designator resolution mechanism to easily combine different

implementations of the same designator property, in our case it was the prop-

erty left-of, both packages discussed above should refer to the same concept.

Therefore, all the designator properties are kept in one common package, namely

cram-designator-properties, and the system provides an easy mechanism

to extend this package with new properties.
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8. Reasoning World

In order to reason about different properties of the world, think ahead of time and

learn from past experience, the robot should have an internal virtual representa-

tion of its real environment and some understanding of how the objects in the

environment interact with each other. The internal representation of the world can

be seen as a picture of the world in robot’s head: each change in the real world

should be reflected in that internal picture. In order to think ahead of time the

robot should be able to imagine different situations, therefore it should be able to

have more than one different world representations in mind at the same time: one

representing the current state of the environment and others for imagined states.

In CRAM the knowledge about the interaction of objects in the world comes

from the Bullet physics engine. It is an open source library written in C++, which,

in order to be used in CRAM, was wrapped by the Common Foreign Function In-

terface for Lisp (CFFI)1. Bullet has functionality for performing collision detection

on the objects in the world and means for performing rigid body dynamics calcu-

lations. It also has a soft body dynamics engine, which is not used in CRAM at the

moment. Noteworthy, Bullet is just a physics library, which does not provide any

means for visualization. In CRAM all the visualization is based on OpenGL. On

Figure 5.1 such a visualization is shown for a certain state of the reasoning world.

Bullet has its own representation of the world to perform dynamics calculations

on it. In the Bullet world objects are regarded as rigid bodies that have some forces

and torques applied to them. There is a certain gravity force that affects all the
1http://common-lisp.net/project/cffi/
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8. Reasoning World

objects. Some rigid bodies have constraints on them, for instance, if they are con-

nected via joints, which is useful to represent doors, robot links etc.

Each rigid body has a certain name, a mass and a state of motion, which contains

information about its pose in the world. In order to perform collision detection,

each object has a certain collision shape assigned to it, e.g its convex hull, a box, a

cylinder, etc. To represent its dynamic state, each object has information about the

overall force and torque applied to it, as well as the linear and angular velocities.

The representation of the world in Bullet comes to specifying a list of all the rigid

bodies that are present in it, all the constraints that the objects have between each

other and a gravity vector. After performing collision detection, the representation

gets supplemented with information about colliding objects and the sets of points

where that objects intersect.

Having Bullet gives the robot knowledge about what the dynamics of its envi-

ronment are. However, one object can consist of multiple semantically connected

rigid bodies, as, for instance, a refrigerator has a door and a container part or the

robot itself consists of multiple links. So CRAM extends the Bullet world with the

concept of an object that can consist of more than one rigid body and has a certain

semantic meaning and use.

There are two ways a corresponding representation of a real object from robot’s

environment can be created in the reasoning world of CRAM. One is the KnowRob

knowledge base [19]. It has a semantic map of all the static objects in the envi-

ronment, as, for example, furniture in the robot kitchen (Figure 8.1 visualizes the

semantic map of a kitchen from Figure 1.1 (left)). Each object in the semantic map

has a number of properties associated with it: a pose, a shape, whether it can be

used to store other objects or not etc. KnowRob does not only provide informa-

tion about the objects that are already present in the environment, but it also has

a database of common sense knowledge, such as, for instance, that cups can be

used to contain liquids. The knowledge base represents in some sense the long-

term memory of the robot. It has the information about the world that does not
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frequently change.

Figure 8.1.: Visualization of a semantic map of a kitchen.

The other source of knowledge about objects that the robot can use is, of course,

perception. Using 3D perception the robot can acquire a point cloud of the object,

triangulate it into a mesh and add the new object into the reasoning world.

In addition to the point cloud interpolation method, CRAM has the possibility

to add new objects to the reasoning world through the ROS package household

objects database, available as a ROS service, which contains 3D models of

various common household objects sold in major retailers (such as IKEA). Each

object also has a number of valid grasps for the PR2 robot that can be applied to the

object. So, as soon as the type of the object is recognized by vision, the information

about its shape and the corresponding grasps can be taken from that database.

There is a number of different types of objects in CRAM. There are methods

to work with articulated objects as cupboards with doors: to acquire information

about the constraints of their joints from the semantic map and to open and close

them in the reasoning world. There is a class of household objects to represent

objects that the robot can manipulate: grasp, pick up, move etc. Each household

object has a certain type and each type has a certain grasp associated with it.

The robot itself is an object of class robot-object, which has a hash table of
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all the links of the robot, the states of its joints and a list of objects attached to

it. If the robot grasps an object, the object gets attached to the robot gripper and

whenever the latter changes its position in the reasoning world the attached object

moves together with it. The information about the mechanical architecture of the

PR2 robot is stored in a URDF (Unified Robot Description Format) file2, which can

be parsed and uploaded to the ROS parameter server to be used in CRAM. The

robot can be moved around in the reasoning world: it can change the position of

the base and the states of the joints (the joint angles), it can move the pan-tilt unit

to point in a certain direction etc.

Currently it is possible to reason about the following aspects of the world us-

ing CRAM: reachability, visibility and stability. For example, it is possible to find

good put down locations on a table for a cup with milk such that it would be well

reachable for a robot while it is cooking, but not make the manipulation of other

objects more complicated. Or it can be used to find a position on the table where

to put a pot, such that it would not occlude the cup with milk, because then the

robot would not be able to track it any more. If there is not much space on the table

the robot might want to put the cup on one of the empty plates on the table, then

the reasoning engine can find the correct pose for the cup, such that it would stay

stable on the plate. The implementation of this is discussed in the next section in

scope of the usage of costmaps for resolving location designators.

All the reasoning methods in CRAM have a reasoning world object as input

parameter, which makes it possible to work on different world states at the same

time. There are also methods to copy a world object, restore a world from a world

state object etc.

It is worth mentioning that the Bullet engine is not very precise: the shapes of

the objects are rather rough approximations of their real world prototypes and the

physics simulation is not completely accurate. However, the prediction can never

2http://www.ros.org/wiki/urdf
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be 100% accurate anyway, because of the imperfections in perception and random

factors of the environment. On the other hand, Bullet has high computational effi-

ciency, required for running CRAM in real-time, so it sacrifices accuracy in favour

of higher performance.
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9. Costmaps

9.1. Motivation

During execution of plans the robot manipulates many different objects and moves

itself from one place to another. Finding good poses where to stand or where to put

objects is rather important for the efficiency of the plan execution. The resolution of

location designators discussed so far is based on location generator and validator

functions. Generators take a designator and return a list of solutions. The solutions

are sorted based on the priority of the function that generated them. Each element

of the generated list is then passed to the validator functions together with the

corresponding designator, and the validator accepts or rejects it. If the number of

rejected solutions exceeds a certain maximum number the system prompts about

designator resolution failure.

All the generators and validators are kept in the corresponding global variables

and are all combined to be used during designator resolution. There are macros to

register the functions: (register-location-generator priority

function &optional doc) and (register-location-validation-

function priority function &optional doc). When the function

reference is called for a location designator, the registered generator functions

are called one after another using lazy evaluation.

In general, the simplest way to generate solutions is to return all the positions

available, e.g. points in the room, in which the robot is standing. The search would
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then stop as soon as a valid solution is found. For example, to find a pose where

to put a fork, such that it would appear to the left of a plate with respect to some

reference point and would not be in collision with other objects, we could conse-

quently put the fork in each point of the room in the reasoning world and check

if the coordinates of the two objects have correct correlation and if it is physically

possible to put the fork at the given position. If a solution exists, we would eventu-

ally find it. However, this method is very costly. Therefore, we use the generative

model to guide the search by only generating those solutions, which are already

to the left of the plate. In addition, we could say that the positions directly to the

left are more preferable than those to the left and behind of the plate. Therefore, it

is necessary to not only have a way to assign priorities to the generating functions

but also to the solutions that they give.

Another requirement on location generators is that there should be a mechanism

to easily combine solutions from different location generators specialized on cer-

tain designator properties. For example, the location designator for the location of

a glass near a plate in table setting context would be:

( des ignator l o c a t i o n ( ( r ight−of plate −1) ( behind plate −1)

( near plate −1) ( f o r glass −1)

( on counter−top ) ) )

One way to resolve this designator is to write a generator function, which would

take all of these properties into account. However, if it was possible to write spe-

cialized generators and then combine their solutions the number of necessary gen-

erator functions to resolve designators with all the different combinations of prop-

erties would be much smaller.
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Figure 9.1.: Different 3D pose components and their corresponding generators.

9.2. Implementation

The way all these requirements on generator functions are fulfilled in CRAM is by

using location costmaps. The generation of a solution pose is then divided into

three stages illustrated on Figure 9.1: first a 2D (x, y) position is generated based

on the costmap, then the z coordinate is added to the 2D position based on height

generators, and finally, the correct orientation for the object that should be assigned

the resulting pose is found using orientation generators. The different generators

are needed to reduce the search space of solutions. Thus, instead of performing

the search in six dimensions (three for position and three for orientation), first, a

valid solution in two dimensions is found and then the missing components of the

pose are generated correspondingly.

The costmap is a 2D grid, where each point (x, y) has a cost value associated

with it. The grid is defined over the whole area of manipulation of the robot, for

example, the area of the room where the robot is standing. A costmap for locations

where a robot can stand without colliding with other objects is visualized on Figure

9.2. In most cases the costmap is used as a 2D probability distribution function,

from which random samples are taken. The coordinates of the sampled grid cell

are then the (x, y) coordinates of the solution for the location designator. With

random sampling the higher the costmap value is, the higher is the probability

that the solution with this value will be chosen. So the costmap generators should
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assign higher values to cells whose coordinates are more preferred as solutions.

A costmap generator is a function that takes as arguments x and y coordinates of

the costmap and returns a value (from the interval [0,1]) that should be put in the

corresponding cell of the grid.

Figure 9.2.: Locations for a robot to stand where it would not collide with other

objects – shown in red.

The parameters of the grid are width and height, which describe the size of

the grid in pixels, origin-x and origin-y, which are the coordinates of the

point 0.0 of the grid in the world frame, and resolution, which is the size of

one grid cell in pixels.

Poses resulting from resolving a location designator should have a 3D position

and an orientation. As mentioned before, sampling from the 2D grid gives only the

x and y coordinates. The z coordinate is given by a height generator and the rest

comes from the orientation generators. A height generator is a function that takes

two arguments – x and y and returns the z coordinate for the location designator

solution. For example, if the designator has the property (on counter-top), the
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corresponding height generator should return a value equal to the z coordinate of

the surface of the counter top. The orientation generators work similarly: for each

point inside the grid they return orientations represented as quaternions. For rota-

tionally symmetric objects they would probably return an identity rotation. How-

ever, for example, for a fork that should be put near a plate in a table setting context

they should generate correct orientations, such that the fork would be aligned with

the table it would be lying on. CRAM has a class called 2d-value-map containing

another 2D grid, which is a generalized version of the costmap grid: it associates

with each grid cell an object. This class is used to represent the maps of the height

and orientation generators. For the height generators the 2d-value-map contains

z values and for orientation generators – quaternions.

All the different generators discussed above are combined to create 3D poses

through the class called location-costmap. It has the following slots:

• cost-map, which is the 2D grid used for generating x and y coordinates

• cost-functions, which is a list of costmap generator functions together

with their corresponding names

• height-generator, which is a callable object implementing the height-

generator functionality

• orientation-generators, which is a list of callable orientation generator

objects

The generator functions are added to a location costmap object using the corre-

sponding registration methods:

• (register-cost-function map function name)

• (register-height-generator map function)

• (register-orientation-generator map function)

63



9. Costmaps

Each cost function from the cost-functions list generates its own costmap

values. In order to combine the values from different generators, they are multi-

plied with each other and the resulting costmap is then normalized to have a sum

of all its values equal to 1. So, when a location costmap object is created the grid

is first empty, then, when the get-cost-map function is called for the first time

on the object, for each grid cell the corresponding costmap values are calculated

and then multiplied with each other. Therefore, if one of the generators assigns 0 to

any of the grid cells there is no point to continue going through the values from the

rest of the generators. For this reason the generator functions are assigned names,

and each name has a corresponding priority value. In order to save computational

effort the generators that assign the most 0 values should have the highest priority

(please note, that for costmap generators higher value means earlier evaluation,

which is the opposite of how the priorities work for the location generator func-

tions). When the costmap grid for a certain location designator is generated for the

first time it is visualized using the OpenGL visualization of CRAM.

One location costmap can have only one height generator, therefore, registering

a new height generator always overwrites the old one. If a location costmap object

does not have any height generator registered the default value is taken for the z

coordinate of the pose, which is 0.0.

Orientation generators take a third argument in addition to the x and y coordi-

nates, which is an orientation returned from the previous generator in the list. For

the first one in the list the identity rotation is passed by default. The results from

orientation generators are combined by calling each generator in turn and passing

the return value of one generator as input argument to the other one. The result

from the last generator is then the overall combined orientation. If a costmap object

has no orientation generators registered, the default identity rotation is taken.

In order to use the costmap mechanism for resolving location designators it is

necessary to define a location generator function based on that mechanism and

register it in the system. This function is called location-costmap-generator
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and has priority value 20. There is also a corresponding validation function called

location-costmap-pose-validator, which discards all the poses that have

a costmap grid value less than a certain threshold (currently it is 20%), as they are

considered to be bad solutions. These functions are automatically registered in the

system when the location-costmap Lisp package is loaded into SBCL.

The function location-costmap-generator calls all the generators and com-

bines them in order to get a valid 3D pose. First it generates the 2D costmap grid

using the (merged-desig-costmap ?designator ?costmap) Prolog predi-

cate. Next, it takes a random sample from the ?costmap. Then it forgets about the

value that the point had in the costmap grid and uses the height generator to find

the z coordinate for the 2D point. Finally, it generates the orientation and creates

the full 3D pose, which is the solution to the location designator. It is, of course, as

any other solution, passed to all the validation functions afterwards. If it is rejected

by them the cycle repeats with a new random sample from the costmap.

CRAM provides a number of Prolog predicates to work with the location costmaps:

(costmap ?cm) generates a new costmap objects and binds it to ?cm if it is not al-

ready bound, (costmap-add-function ?name ?function ?costmap) adds

a costmap generator to the object ?costmap etc. It also provides a number of

costmap generator functions, which are sometimes called cost functions. There is

a cost function that evaluates for each coordinate point the value of a Gaussian

with certain mean and variance. The range cost function generates a circle with

given radius and center with all values equal to 1. The axis-boundary cost func-

tion returns 1 for all the coordinates that are on the given side of the given axis.

There is a cost function for generating padded costmaps etc. There is also a num-

ber of orientation and height generators, such as a function to return orientations

facing towards a certain point or to create heights based on the semantic map.

In order to use costmaps for resolving location designators the custom imple-

mentation of the Prolog predicate (desig-costmap ?designator ?costmap)

should be provided to the system, because merged-desig-costmap, on which
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location-costmap-generator is based, just merges all the costmaps that sin-

gle implementations of desig-costmap provide. From software architecture

point of view each implementation should be specific to a certain set of designator

properties.

There are two implementations of the desig-costmap predicate in the

location-costmap package: one is for the designator property (to see), which

uses a Gaussian around the target pose to generate the costmap, and the other one

is for reachability designators (e.g. those with the property (to reach)), which

has a similar approach using Gaussian. There is a number of Lisp packages in

CRAM that provide more complex implementations of these designator proper-

ties. They are based on OpenGL off-screen rendering techniques, inverse reacha-

bility calculations, etc [13]. If those packages are loaded into SBCL together with

the location-costmap package, all the costmaps they provide for specific des-

ignator properties are merged together by multiplying the values with each other.

For instance, let us consider the following predicate:

( reachable ?world−s t a t e ? robot−base−p o s i t i o n ? o b j e c t )

which for bound ?world-state and ?robot-base-position should give all

the objects in the world that the robot can reach from the specified position. A sim-

ple solution to this would be to load a package with an implementation that returns

all the objects that are not further from ?robot-base-position than the max-

imum distance that the robot can reach due to its mechanical design. However,

if a higher accuracy is necessary a package with an implementation that uses in-

verse kinematics calculations can also be loaded. Then both implementations will

be combined: first, the distance criterion will be checked for a certain object, and if

it satisfied, the inverse kinematics method will be applied.

Another set of costmaps implemented in CRAM is for resolving spatial relations.

They are discussed in the next part of the thesis.
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In scope of this thesis CRAM was extended to enable describing locations based

on spatial relations, which enables the use of relations as “left-of” or “far-from” in

robot plan specifications. This can be utilized in spatial reasoning that is typically

used in robotics, for example, for localization, in human-robot interaction to un-

derstand what a human means by these relations or for executing actions specified

in natural language: for instance, it can be used for parsing the knowledge that can

be found on the Internet about how to perform certain actions written as natural

language instructions. Spatial relations expressions are used in such instructions

quite often.

The approach was to introduce a number of additional designator properties

with their corresponding inference mechanisms. Those properties are: left-of,

right-of, in-front-of, behind, near and far-from and, of course, their

combinations.

The resolution of spatial relation designator properties is based on the location

costmap mechanism. For that the (desig-costmap ?designator ?costmap)

Prolog predicate was redefined to generate costmaps for specific relations. For

some of the costmaps it was necessary to develop new cost functions. The solu-

tions of designators described with spatial relations depend on the context, so a

small knowledge base was created to keep the context specific information. In the

future this knowledge base is supposed to be merged with KnowRob. In order to

validate the solution candidates sampled from the costmaps two validators have

been developed: one for performing collision check for an object placed at the gen-
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erated pose and the other one – for narrowing down the solutions to conform with

the context.

As usual with the costmaps, the pose is generated using three different genera-

tors: a generator for a 2D location, height and orientation. The height generators of

the costmaps for spatial relations resolution give solutions based on the supporting

object of the reference object. For example, let us consider a designator

( des ignator l o c a t i o n ( ( l e f t −of mug−1) ( f o r bowl−1) ) )

which represents a position for a target object bowl-1 to the left of the reference

object mug-1, as shown on Figure 10.1. The height generator will generate a z

coordinate that corresponds to the position of the surface of the supporting object

of mug-1, e.g. the table, on which mug-1 stands.

Figure 10.1.: A green bowl bowl-1 – the target object – is positioned to the left of

the orange mug mug-1 – the reference object.

The orientation of the generated pose also depends on the supporting object of

the reference object, and if the latter is not rotationally symmetric, then the cor-

responding orientation is generated aligned with the supporting object. So, it is

important for the designator resolving mechanism to know, for which exactly ob-

ject the pose is generated. That is why we need to specify the designator property

for.

Please note, that at the moment the relations are only defined with respect to
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poses of reference objects but not for any pose in space, which has no object asso-

ciated with it.

10.1. Directional Relations

10.1.1. Costmap Generation

The directional relations left-of, right-of, in-front-of and behind are

resolved based on a cost function, the implementation of which was inspired by

the membership functions of fuzzy sets, as, for instance, presented in [8]. It gives

higher values to the positions that strictly satisfy the specified spatial relation con-

straint, and lower values to those that deviate from the strict direction. For exam-

ple, the costmap for a relation left-of is shown on Figure 10.2. The cost function

takes an axis, a predicate and an optional threshold as parameters and returns a

closure, which for each (x, y) gives a cost value. The axis is either :x or :y (in the

supporting object coordinate system), depending on the relation. The predicate is

either “bigger” or “smaller” and defines if the corresponding relation goes in the

positive or negative direction of the axis. The axis and the predicate depend on

the context and the point of view. For example, in the table setting context they

are fully determined by the supporting object, more specifically – by the edge to

which the reference object is the closest, as shown on Figure 10.3. However, if the

context is a human-robot interaction and the human instructs the robot to bring

him a certain object and describes it by spatial relations, the robot should know

from whose point of view the relations are described – the human’s or the robot’s.

The edge is decided by the function get-closest-edge, which takes the pose

of the object (in world coordinates) and the pose and dimensions of the support,

calculates the distances from the object pose to the edges of the support and com-

pares them. In context of table setting longer edges of the supporting object are

more preferable, because the table is usually set along the longer edges. To ac-
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Figure 10.2.: Costmap for the relation (left-of plate-1)

Figure 10.3.: Spatial relation directions for two different plate poses: one near the

positive y axis edge of the table, and one – near its negative x axis.

count for that the distances are multiplied with corresponding coefficients.

The cost function works as following:

• a vector is calculated from the reference object to the target object

• the vector is projected onto the specified axis of the supporting object coor-

dinate system

• the ratio between the lengths of the projection and the vector is calculated
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• if (x, y) is positioned on the specified side of the axis the absolute value of

the lengths ration is returned, otherwise the cost function returns 0.

As a result, we get, for example, the costmap shown on Figure 10.2 for the rela-

tion (left-of plate-1). This gives very high values for the coordinates, which

are directly to the left of plate-1, and the more the coordinates deviate from that

direction the lower the values get. This means that the coordinates that are only

a bit to the left of the cup still have a small chance to be sampled. Depending

on the context, this may or may not be allowed. In the latter case the threshold

parameter of the cost function may be used to discard all the values, which are

below it. However, this parameter can only be used if the corresponding location

designator has only one spatial relation property. In the contexts, such as of ta-

ble setting, where a combination of relations is necessary, this parameter should

be used very carefully. For example, the resolution of a designator ((right-of

plate) (behind plate)), which is the description of position of a glass in the

table setting context, for 0 threshold would look as shown on Figure 10.4 (right).

As mentioned before, the merging of costmaps is performed by multiplying the

values in a certain grid cell from all the costmaps with each other and then nor-

malizing the resulting costmap to have a sum of all values equal to 1. In case

of the designator ((right-of plate) (behind plate)), two values are mul-

tiplied with each other for each grid cell – one value comes from the (right-of

plate) costmap, and one – from (behind plate).

However, if the threshold is set to 0.9, the multiplication would give a 0 costmap,

because there would be no overlap between the costmaps for properties right-of

and behind during merging. A better alternative in that case is to discard the

wrong solutions in the validation step.
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Figure 10.4.: Costmaps for the relations right-of, behind and their combi-

nation: (left) relation right-of, (center) relation behind, (right)

combination.

10.1.2. Height and Orientation Generators

As already mentioned, the height of the solution pose is generated based on the

support of the reference object. The corresponding height generator returns values

equal to the z coordinate of the supporting object surface for any (x, y), which is

inside the boundaries of the support.

For the target objects that need to be correctly oriented, a Prolog predicate

orientation-matters should be defined. For instance, in the table setting

context those are the cutlery items. However, in a context of clearing the ta-

ble, when the robot collects all the cutlery from the table on a tray, the orien-

tation is not that crucial anymore. For rotationally symmetric objects the orien-

tation, obviously, does not matter. The orientation of those objects, for which

orientation-matters is defined, is calculated based on the supporting object.

Depending on the context, there can be two ways to generate the orientation: ei-

ther based on the reference object – then the orientation parallel to the edge of the

support closest to the reference object will be taken, or based on the target object –

then the closest edge will be calculated with respect to the target pose. The object

is oriented in such a way, that the angle around the z axis would be 0 between the

correct direction along the edge for the corresponding relation and the y axis of the

object mesh, as shown on Figure 10.5.
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Figure 10.5.: The forks are positioned to the left of plates, as the angle between

their y axes and the left-of axes of the table have 0 angle.

As a result, the pose shown on Figure 10.6 is generated upon resolving the loca-

tion designator with properties ((left-of plate-1) (for fork-1)):

Figure 10.6.: A fork was assigned a pose generated from resolving the designator

((left-of plate-1)(for fork-1)).

10.1.3. Validation

Per default, the resolution of directional relations gives a costmap with spread an-

gle of 180◦. In some contexts this angle is too wide, for example, when placing
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a fork to the left of a plate the allowed angle is very small – around 20◦. A vali-

dation function was developed to reject all the solutions of a location designator

below a certain threshold. The difference between this method and the threshold

in the generator cost function is that the validation function looks at the values of

the merged costmap, whereas the cost function can only process values for a sin-

gle costmap. The corresponding threshold for each object type is defined in the

knowledge base.

Collision avoidance is also performed by a validation function. It places the

target object at the generated pose in the copy of the reasoning world and checks

if the object is in collision with any other household object using the Bullet physics

engine. It checks only the household objects because collisions with objects from

the semantic map, such as furniture, are allowed, as the object will at least be in

collision with its support.

10.2. Distance Relations

In the example above, a pose for a fork to the left of a plate was generated. As it

can be seen, in the context of table setting the pose is incorrect: the fork should

be placed very close to the plate. Additional designator properties – near and

far-from – that describe distances can be used to fix that.

The costmap for the property near is generated by merging the following three

costmaps:

• a costmap generated by a 2D Gaussian function with the mean positioned

at the pose of the reference object and standard deviation taken from the

knowledge base, as shown on Figure 10.7 a).

• an inverted range costmap, which has 1 assigned to all the points that are

further than a certain minimal distance from the reference object pose, and 0

– elsewhere, as shown on Figure 10.7 b).
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• a range costmap, which has ones at all the points that have less than a certain

maximum distance from the object pose, as shown on Figure 10.7 c).

The resulting costmap is shown on the Figure 10.7 d).

Figure 10.7.: Different costmaps defined for the near designator property and the

overall costmap resulting from their combination: (top left) Gaussian

cost function based costmap, (top right) range costmap for a certain

maximal distance, (bottom left) inverted range costmap for a certain

minimal distance, (bottom right) combination of the three

The minimal distance from the reference object pose depends on the size of the

object and a certain padding, specified in the knowledge base for different objects

and contexts. The maximum distance is defined based on the dimensions of the
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reference and target objects and their corresponding paddings.

The relation far-from is resolved in a similar way, except that it has no gaus-

sian cost function among its generators, as all the solutions in a certain range are

equally good. In our system the relation far-from means that the reference and

target objects should have a distance enough for another object with the size of the

bigger of the two to be put in between, as shown on Figure 10.8.

Figure 10.8.: Costmap for the far-from designator property.

10.3. Table Setting

The table setting is performed by first calculating the poses for the plates on the

table, and then, putting the other objects, namely, the knives, forks and cups, rela-

tive to the plates. The cost function, which generates the poses for the plates, takes

as input the number of objects, dimensions and the pose of the table, minimal and

maximal distances that the objects can have between each other, the padding sizes

that the objects should have from the table edges etc. and generates a costmap,

which tries to distribute the objects on the table under the given minimal distance

and padding constraints. If there is not enough space for all the objects it tries to fit

as many as possible. The costmaps for three and six objects are shown on Figure

10.9.
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Figure 10.9.: Costmaps for plate locations on a counter top in a table setting sce-

nario: (left) costmap for three objects, (right) costmap for six or more

objects.

During the table setting the necessary objects are initially placed on the kitchen

counter, as shown on Figure 10.10.

Figure 10.10.: Initial poses of objects to be used in table setting.

The execution of the scenario progresses as following: the robot searches for a

plate on the kitchen counter and, as soon as one is found, it grasps it and puts it

on the corresponding spot on the table, avoiding collisions (Figure 10.11 (top left)).

An example designator for a location of a plate looks as following:

( des ignator l o c a t i o n ( ( on counter−top ) (name kitchen−i s l a n d )
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( contex t tab le−s e t t i n g ) ( o b j e c t−count 4 )

( f o r plate −1) ) )

Then the robot performs the same actions, as for the plate, with a fork, a knife

and a cup, using locations generated with the designators defined with respect to

the found plate. The position for a cup is found by sampling from the costmap

shown on Figure 10.11 (top center) and generated by the following designator:

( des ignator l o c a t i o n ( ( r ight−of plate −1) ( behind plate −1)

( near plate −1) ( f o r cup−1)

( on counter−top ) ) )

The designators for a fork and a knife generate costmaps shown on Figures 10.11

(top right), (bottom left) and are written as following:

( des ignator l o c a t i o n ( ( l e f t −of plate −2) ( near plate −2)

( f o r fork −2) ( on counter−top ) ) )

( des ignator l o c a t i o n ( ( r ight−of plate −3) ( near plate −3)

( f o r knife −3) ( on counter−top ) ) )

The result of the table setting is shown on the Figure 10.11 (bottom right).
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Figure 10.11.: Different stages of execution of a table setting scenario for four table-

ware sets: (top left) costmap for a plate position, (top center) costmap

for a put-down location of a mug, (top right) costmap for a fork, (bot-

tom left) costmap for a knife and (bottom right) final result.
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One run of execution of the whole scenario in projection mode with four table sets

took 16:46 minutes1 (depending on the random factors it may take slightly more or

less time), from which 3:41 takes to generate the costmaps and sample valid poses

for spatial relations. Sampling from a costmap took in different cases from 1 to 42

seconds. The reason for higher sampling times is that in table setting context the

validity thresholds for costmap values are chosen very high in order to achieve ac-

curate object placement. Therefore, it takes much time to find a valid value using

the default random sampling. This type of sampling is efficient in some applica-

tions, such as for sampling poses on a table that do not bring to collisions, but is

not the best method to use for spatial relations.

To improve that a different sampling mechanism was developed: the costmap

is first sorted according to the values in its cells, then the sampling proceeds by

returning coordinates of the cells with the highest values. The performance im-

proved to 1 to 8 seconds for all the sampling during the scenario execution.

Using the new priority sampling mechanism makes some tasks simpler, such as

putting down three forks and knives near a plate, as shown on Figure 11.1: all the

positions (starting from the closest to the plate) are tried out in turn and rejected

because of collision with other knives and forks, until a free spot is found. For

random sampling this would not be possible, as the near relation should then be

defined over a very narrow range of poses that are very close to the plate, because

1On a Dell Precision M4400 computer with a 2.53GHz processor, 3.9 GB RAM and a 512 MB

NVidia graphics card.
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any pose in the range, including the furthest ones, can be sampled, and therefore

used as a put down location for the cutlery item. As a result, the cutlery can appear

much further from the plate than is appropriate in the specific context. Whereas

with priority sampling, further from the plate poses are sampled only if the closer

ones are already taken.

Figure 11.1.: Three cutlery sets are positioned near a plate using the priority sam-

pling mechanism.

In certain contexts, some sampling mechanisms are better than others. Thus,

a mechanism for selecting the sampling algorithm based on context needs to be

implemented, which is considered future work.

The costmaps for spatial relations were tested in a setup where many objects

were already placed on a table to prove their usefulness in real world settings. The

initial setup is shown on Figure 11.2 (left).

In most cases where a human could theoretically achieve good results without

moving the objects on the table, it was also possible with the system, as shown on

Figure 11.2 (right). Please note, that this result would be much more complicated to

achieve using heuristics or hard-coded locations, because they would have to use

specific failure handling methods, e.g. if a collision is detected, try a new location

5 cm to the left. Whereas costmaps are very general and can be used for any kind

of constraint based location description, as was demonstrated in this thesis: be it a
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Figure 11.2.: Table setting in a cluttered environment: (left) a number of objects

that do not belong to a dining set are positioned on a table, (right)

the robot searches for put-down locations for the dining set items that

do not cause collisions with other objects but still satisfy the context-

specific constraints

reachability, visibility, stability, spatial relation or some other constraint.
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12. Conclusion

In this Master’s Thesis an approach was presented for resolving qualitative spatial

scene descriptions into geometrical poses based on a generative model, which can

be utilized in spatial reasoning, communication between the human and the robot

or executing plans described in natural language.

The mechanism was integrated into the Cognitive Robot Abstract Machine (CRAM),

which is a framework for robot action planning, reasoning and control. It is written

in Common Lisp, uses the Robot Operating System (ROS) as a middleware and is

open-source. Plans in CRAM are written in extended RPL called CRAM Plan Lan-

guage (CPL) and are parametrized by designators, which are abstract symbolic

descriptions of locations, objects, actions and other parameters that can be used

for specifying plans.

Designators are resolved on demand when the plan needs to use a certain des-

ignator in the execution of a low-level action. Resolution works by translating the

designator into a Prolog program, which uses both qualitative and quantitative

reasoning in order to find a solution. The qualitative reasoning is done by first-

order logic inference used in Prolog and quantitative reasoning is based on spe-

cialized methods, be it inverse kinematics solver inferring reachability or OpenGL

offscreen renderer for visibility reasoning, etc. The quantitative reasoning is based

on an accurate 3D representation of the environment of the robot.

The resolution mechanism for location designators is based on a generative model:

initial solution candidates are first generated using lazy evaluation and are ac-

cepted only when they pass the validation step. For complex location designators
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the concept of costmaps is used. Those are 2D grids defined over a certain domain,

usually the area of the room, in which the robot is positioned, and have a value in

range of 0 to 1 associated with each grid cell. A location designator can have a

costmap associated with it, in which case the value in the grid cell determines, to

which degree the location of the cell is appropriate as a solution for the given des-

ignator. These values are then used to sample solutions from the costmap during

the generation step of designator resolution.

Spatial relations are represented in CRAM using location designators and are

resolved using the costmap mechanism, which is a novel approach for resolving

symbolic spatial relations. The relations defined at the moment are left-of,

right-of, in-front-of, behind, near, far-from and their combinations.

A number of cost functions was developed for generating the costmaps for the

spatial relations. In addition, a new sampling mechanism was developed for the

spatial relation costmaps, which gave substantial increase in efficiency of finding

valid solutions. The validity of solutions is decided by two validation functions:

one for checking if the generated pose for the object would cause it to collide with

other objects, and the other – to check if the costmap value at the sampled position

is good enough for a specific context.

A number of experiments was performed using the lightweight simulation frame-

work of CRAM to check the applicability of the costmaps. All the experiments

gave promising results:

• They were used to set a table using the objects, such as plates, cups, forks

and knives.

• They were tested for putting more than one cutlery item on one side of a

plate in the table setting context.

• The table setting scenario was run on a table full of other objects to see if the

costmaps are flexible enough to still give valid solutions avoiding collisions

and conforming with the context specific constraints.
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Despite the promising results demonstrated in this work, there is still much to be

done to improve the approach and make it more robust and flexible. One of such

improvements could be to implement a flexible mechanism for switching between

the sampling algorithms based on the designator that is resolved, as currently the

switching is done manually. In addition, a more flexible system could be imple-

mented to work with different execution contexts and choosing correct designator

resolution methods based on those contexts. Some of the context-based parameters

are currently hard-coded for specific objects, so to improve that, machine learning

could be used for finding correct context based parameters that cannot be inferred

by reasoning.

The code should be further optimized and tested. It would be interesting to

see the table setting scenario executed on a real robot. If more accuracy in the

resolving mechanism will be necessary, it can be improved, for instance, by taking

into consideration the bounding boxes of reference objects instead of just using

their origins as reference points for the relations.

Ultimately, the system for translating spatial scene descriptions into geometric

poses should be integrated with the natural language processing framework [18]

to enable the robots to execute complex actions explained in detail in the Internet,

also by means of spatial relations.
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